
UCID- 18834

NUMERICAL ELECTROMAGNETICS CODE (NEC) -METHOD OF MOMENTS

PART II: PROGRAM DESCRIPTION - CODE

G. J. Burke A. J. Poggio

January 1981

DISCLAIMER (From the original NEC document)

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informatiom, apparatus, product, or process disclosed, or represents that its use would not infrige privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Unived States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Part I: Program Description - Theory Part II: Program Listing Part III: User's guide

And may be obtained from the National Technical Information Service (U.S. Department of Commerce) 5285 Port Royal Road Springfield, VA 22161

> Fax: +1 (703) 321 8547 Tel: +1 (703) 487 4679 http://www.ntis.gov

Ordering codes: AD-A075 209, AD-A075 289 and AD-A075 460 (not sure which is which)

April 1998

This document (Part II) was scanned at a resolution of 196x204DPI and placed into a CCITT/G4 encoded PDF. Only minor cosmetic changes were made. The original page US Letter page size was preserved, use the Acrobat "shrink to fit" print menu option for output to the DIN A4 format. Also remember to select double sided printing, if your can - there are 441 pages!

I make no representation whasoever as to the usefulness or exactitude of this file. (Imagine here whatever lawyerese you think is appropriate.) Please let me know your impressions on this file.

Have fun!

Alexandre Kampouris, Montréal E-Mail: ak@Radio-BIP.qc.ca

Preface

The Numerical Electromagnetics Code (NEC) has been developed at the Lawrence Livermore Laboratory, Livermore, California, under the sponsorship of the Naval Ocean Systems Center and the Air Force Weapons Laboratory. It is an advanced version of the Antenna Modeling Program (AMP) developed in the early 1970's by MBAssociates for the Naval Research Laboratory, Naval Ship Engineering Center, U.S. Army ECOM/Communications Systems, U.S. Army Strategic Communications Command, and Rome Air Development Center under Office of Naval Research Contract N00014-71-C-0187. The present version of NEC is the result of efforts by G. J. Burke and A. J. Poggio of Lawrence Livermore Laboratory.

The documentaton for NEC consists of three parts:

Part I:NEC Program Description - TheoryPart II:NEC Program Description - CodePart III:NEC User's Guide

The documentation has been prepared by using the AMP documents as foundations and by modifying those as needed. In some cases this led to minor changes in the original documents while in many cases major modifications were required.

Over the years many individuals have been contributors to AMP and NEC and are acknowledged here as follows:

R.	₩.	Adams	R.	J.	Lytle
J.	N.	Brittingham	E.	К.	Miller
G.	J.	Burke	J.	в.	Morton
F.	J.	Deadrick	G.	м.	Pjerrou
к.	к.	Hazard	A.	J.	Poggio
Ð.	L.	Кперр	Ε.	s.	Selden

D. L. Lager

The support for the development of NEC-2 at the Lawrence Livermore Laboratory has been provided by the Naval Ocean Systems Center under MIPR-N0095376MP. Cognizant individuals under whom this project was carried out include: J. Rockway and J. Logan. Previous development of NEC also included the support of the Air Force Weapons Laboratory (Project Order 76-090) and was monitored by J. Castillo and TSgt. H. Goodwin.

Work was performed under the auspices of the U.S. Department of Energy under contract No. W-7405-Eng-48. Reference to a company or product name

i

does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

ii

Contents

r

Sectio	<u>F</u>	Page
	List of Illustrations	vii
	Abstract	viii
Ι.	INTRODUCTION	1
II.	CODE DESCRIPTION	2
	1AIN	3
	ARC	29
	TGN2	31
	BLCKOT	32
	CABC	34
	ANG	38
	MNGF	39
	MSET	47
	MSS	53
	MSW	57
	MWS	63
	MWW	67
	ONECT	71
	OUPLE	80
	ATAGN	83
	B10	90
	FLD	91
	кsc	100
	кsсх	102
	NF	105
	TMNS	106
	ACGF	116
	ACIO	120
	ACTR	123
	ACTRS	128
	BAR	132
	BLOCK	135
	DECOR V	

Section

Page

FBNGF	•															•														139
FFLD .																	•			•	•	•	-	•	•	•	•	•	•	
FFLDS										-		_	-					ļ	•	•	•	•	•	•	•	•	•	•	•	142
GF																	-			•	•	•	•	•	•	•	•	•	•	151
GFIL .											-	-		-	•	-		•	•	•	•	•	•	•	•	•	•	•	•	153
GFLD .								•	•		•	•					•	•	•	•	•	•	•	•	•	•	•	•	٠	155 159
GFOUT			•											_		-				Ţ	•	•	•	•	•	٠	•	٠	•	
GH			•							•					Ì	-		•				•	•	•	•	•	•	•	•	169 172
GWAVE												_			_	-			•		•	•	•	•	•	•	•	•	•	
GX	•	•							•				·			Ì		•	•	•	•	•	•	•	•	•	•	•	•	174 183
cxx .													-				•	•	•	•	•	•	•	•	•	•	•	•	•	
HFK .								•									•		•	•	•	•	•	•	•	•	•	•	•	184 186
HINTG			•					•														•	•	•	•	•	•	•	•	180
HSFLD								•	•	•	•	•	•											•		•	•	•	•	194
HSFLX						•				•												-		-	į		Ī	•	•	198
INTRP	•						•	•				•														•	•	•	•	202
INTX .					•																					•	•	•	•	202
ISEGNO								•										•		•	•	•	•	•	•	•	•	•	•	209
LFACTR													•										•	·	•	•	•	•	•	217
LOAD .			•	•		•		•	•	•	•					-		•	•	•		•	•	•	•	•	•	•	•	222
LTSOLV													•	•		-				•	•	•	•	•	•	•	•	•	•	227
LUNSCR					•								•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	231
MOVE .		-	•	·													•	•		•	•	•	•	•	•	•	•	•	•	234
NEFLD			•			•	•				•									•	•	•	•	•	•	•	•	•	•	234
NETWK	•		•									•	•											•		•	•	•	•	244
NFPAT	•	•		•						•						•	•		•	•	•							•	•	258
NHFLD		•		•	•																						•	•	•	261
РАТСН	•					•	•				•	•	•		•	•		•										•	•	265
PCINT				•								•		•				•				•	•							271
PRNT .			•	•			•				•	•			•			•		•							•			278
QDSRC	•	•						•		•					•	•		•	•	•	•	•	•							282
																												-	-	

Section

	RDPAT
	REBLK
	REFLC
	ROM2
	SBF
	SECOND
	SFLDS
	SOLGF
	SOLVE
	SOLVES
	TBF
	TEST
	TRIO
	UNERE
	WIRE
	ZINT
III.	COMMON BLOCKS
IV.	SYSTEM LIBRARY FUNCTIONS USED BY NEC
۷.	ARRAY DIMENSION LIMITATIONS
VI.	OVERVIEW OF NUMERICAL GREEN'S FUNCTION OPERATION
VII.	OVERVIEW OF MATRIX OPERATIONS USING FILE STORAGE
VIII.	NEC SUBROUTINE LINKAGE
IX.	SOMNEC
	1. SOMNEC Code Description
	SOMNEC
	BESSEL
	HANKEL

Page

418

۴

Section

Page

r-

	ROM1 .	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•					420
	SAOA .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				423
	SECOND	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	427
	TEST .																												
2.	Common	Bl	loc	cks	5 3	in	SC	DM	VEC	2	•	•	•	•	•	•	•	•		•									428
	Array }																												
4.	SOMNEC	Sι	ıbı	cοι	ıti	ine	e I	ir	ıka	ıge	2	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	431
Refe	erences	•	•	*	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	433

List of Illustrations

Figure

Page

1	Flow Diagram of Main Program Input Section	4
2	Flow Diagram of Main Program Computation Section	5
3	Structure for Illustrating Segment Connection Data	72
4	Coordinate Parameters for the Incident Plane Wave	108
5	Coordinate Parameters for Current Element	110
6	Coordinate Systems Used to Evaluate Norton's Expressions	
	for the Ground Wave Fields in the NEC Program	160
7	Coordinates for Evaluating H Field of a Segment	199
8	Options for Transmission Line Connection	247
9	Sorting Procedure for Segments Having Network Connection	248
10	Patches at a Wire Connection Point	272
11	Coordinates of Segment í	356
12	Matrix Structure for the NGF Solution	379
13	NCF File Usage for ICASX = 2	383
14	NGF File Usage for ICASX = 3 or 4	384
15		
	NEC Subroutine Linkage Chart	386
16	Block Definitions for NEC Subroutine Linkage Chart	388
17	SOMNEC Subroutine Linkage Chart	432

¥

Abstract

The Numerical Electromagnetics Code (NEC-2) is a computer code for analyzing the electromagnetic response of an arbitrary structure consisting of wires and surfaces in free space or over a ground plane. The analysis is accomplished by the numerical solution of integral equations for induced currents. The excitation may be an incident plane wave or a voltage source on a wire, while the output may include current and charge density, electric or magnetic field in the vicinity of the structure, and radiated fields. Hence, the code may be used for antenna analysis or scattering and EMP studies.

This document is Part II of a three-part report. It contains a detailed description of the Fortran coding, including the definitions of variables and constants, and a listing of the code. The other two documents cover the equations and numerical methods (Part I) and instructions for use of the code (Part III).

KEY WORDS FOR DD FORM 1473:

EM scattering

EMP

Wire Model

Method of moments

Section I Introduction

The Numerical Electromagnetics Code (NEC-2)* is a user-oriented computer code for the analysis of the electromagnetic response of antennas and other metal structures. It is built around the numerical solution of integral equations for the currents induced on the structure by sources or incident fields. This approach avoids many of the simplifying assumptions required by other solution methods and provides a highly accurate and versatile tool for electromagnetic analysis.

The code combines an integral equation for smooth surfaces with one specialized to wires to provide for convenient and accurate modeling of a wide range of structures. A model may include nonradiating networks and transmission lines connecting parts of the structure, perfect or imperfect conductors, and lumped-element loading. A structure may also be modeled over a ground plane that may be either a perfect or imperfect conductor.

The excitation may be either voltage sources on the structure or an incident plane wave of linear or elliptic polarization. The output may include induced currents and charges, near electric or magnetic fields, and radiated fields. Hence, the program is suited to either antenna analysis or scattering; and EMP studies.

This document is Vol. II of a three-part report on NEC. It contains a detailed description of the Fortran coding. Section II contains for each routine: (1) a statement of purpose, (2) a narrative description of the methodology, (3) definitions of variables and constants, and (4) a listing of the code. The remaining sections cover the common blocks, system library functions, array dimension limitations, and subroutine linkage. The information in Vol. II will be of use mainly to persons attempting to modify the code or to use it on a computer system with which the delivered deck is not compatible.

Vol. I describes the equations and numerical methods used in NEC and Vol. III contains instructions for using the code, including preparation of input data and interpretation of output. Persons attempting to use NEC for the first time should start by reading Vol. III. Vol. I will help the new user to understand the capabilities and limitations of NEC.

*NEC-2 will be abbreviated to NEC elsewhere in this volume.

-1-

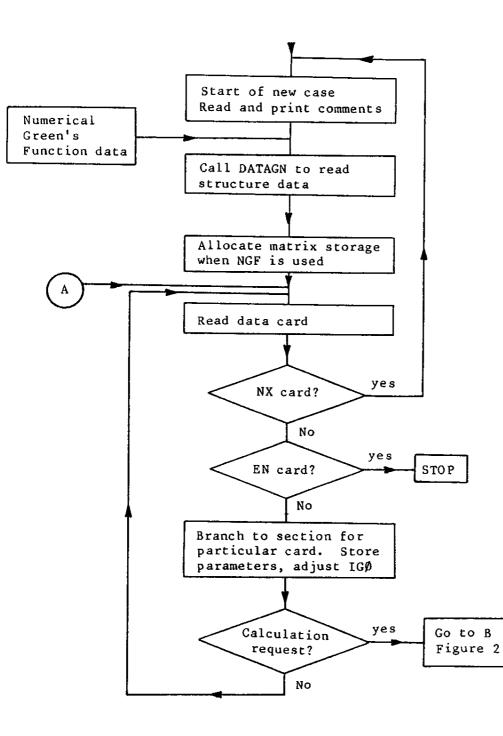
Section II Code Description

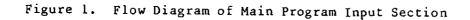
In this section, each routine in NEC is described in detail. The main program is described first and is followed by the subroutines in alphabetical order. For each routine, there is a brief statement of its purpose, a description of the code, an alphabetized listing and definition of important variables and constants, and a listing of the code. Variables that are in common blocks, and hence occur in several routines, are usually omitted from the lists for individual routines. They are defined in Section III under their common block labels.

Following line MA 495 in the main program, all quantities of length have been normalized to wavelength. Current is normalized to wavelength throughout the solution. This changes the appearance of many of the equations. In particular the wave number, $k = 2\pi/\lambda$, usually appears as 2π .

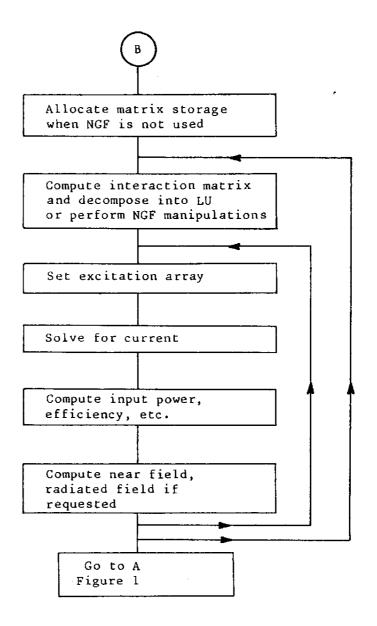
PURPOSE

To handle input and output and to call the appropriate subroutines.


METHOD


The structure of MAIN is shown in the flow charts of Figures 1 and 2 where Figure 1 represents the first half of the code to about line MA 459. Comment cards are read and printed after line MA 72 and subroutine DATAGN is called at MA 90 to read and process structure data. If a Numerical Green's Function (NGF) file was read in DATAGN then subroutine FBNFG is called to determine whether file storage is needed for the matrix and to allocate core storage. When a NGF has not been read the mode of matrix storage cannot be determined until line MA 464 since it depends on whether a NFG file is to be written.

The box labeled "Read data card" in Figure 1 refers to the READ statement at MA 139. Any of the types of data cards in Table 1 may be read at this point to set parameters or to request execution of the solution part of the code.


The integer variables IGØ and IFLOW are keys to the operation of the code. IGØ indicates the stage of completion of the solution as listed in Table 2. When a card requesting execution is read (NE, NH, RP, WG, or XQ) the solution part of the code (Figure 2) is entered at the point determined by IGØ (see MA 385, MA 420, MA 429, and MA 457). After the current has been computed IGØ is given the value five. If subsequent data cards change parameters, the value of IGØ is reduced to the value in Table 1 to indicate the point beyond which the solution must be repeated. For example, when an EX card is read IGØ is set equal to three if it was greater than three but is not changed if it was less than three. For cards that request execution "ex." is shown in Table 1.

IFLOW is used to indicate the type of the previous data card. When several cards of the same type can be used together (CP, LD, NT, TL, and EX for voltage sources) a counter is incremented and data is added to arrays if the card is the same as the previous card as indicated by IFLOW. If the previous card was different the counter is initialized and previous data in the arrays is destroyed. IFLOW is also used to indicate what type of card

-4-

Figure 2. Flow Diagram of Main Program Computation Section

```
TABLE 1
```

•

	I	AIN(I)	GO TO	Line	IGØ	IFLOW .
1	21	CP	304	202	-	2
2	19	ЕК	320	194	2	1
3	13	EN	STØP	166	-	-
4	5	ΕX	24	275	3	5
5	2	FR	16	172	1	1
6	9	GD	34	389	-	9
7	4	GN	21	245	2	4
8	16	КH	305	187	2	1
9	3	LD	17	221	2	3
10	8	NE	32	370	ex.*	8
11	17	NH	208	368	ex.*	8
12	6	NT	28	321	3	6
13	12	NX	1	69	1	1
14	18	PQ	319	358	-	-
15	15	ΡT	31	348	-	-
16	10	R P	36	398	ex.	10
17	14	TL	28	321	3	6
18	20	WG	322	424	ex.	12
19	7	XQ	37	433	ex.	7 or 11

* NE and NH do not cause execution when multiple frequencies have been requested on the FR card. This allows computation of both near fields and radiated fields in a frequency loop.

Table 2.

.

IGO	Completion Point
1	Start
2	Frequency has been set and geometry scaled to wavelength
3	Interaction matrix filled and factored
4,5	Current computed and printed

r

requested the solution (NE, RP, etc.). Cards such as RP may be stacked together but are not stored since they are acted upon as they are encountered.

The solution part of the code contains a loop over frequency starting at MA 463 and a loop over incident field direction starting at MA 562. FBLOCK is called at MA 465 to determine whether file storage is required for the matrix. From MA 466 to MA 493 the structure data are scaled from units of meters to wavelength or from one wavelength to the next when frequency is changed. Subroutine LOAD is called at MA 497 to fill array ZARRAY for the given frequency. At MA 520 the Sommerfeld interpolation tables are read from file TAPE21 if this option is used. NXA(1) is set to zero at MA 67 so the test ensures that the tape is read only once.

When the NGF option is not in use the matrix is filled by subroutine CMSET at MA 537 and factored by subroutine FACTRS at MA 540. When the NGF is used the equivalent steps are performed by CMNGF and FACGF. If a NGF file is to be written, subroutine GFOUT is called at MA 557 to write TAPE20.

Subroutine ETMNS, called at MA 582, fills the excitation array and the current is computed in subroutine NETWK called at MA 611. If transmission lines or two port networks are used NETWK combines the network equations with driving-point interaction equations derived from the primary interaction matrix. Otherwise the current is computed directly from the primary matrix.

The remainder of MAIN prints the currents and calls subroutines for near fields, radiated fields or coupling.

SYMBOL DICTIONARY:

AIN	= mnemonic from data card
ATST	= array of possible data card mnemonics
CMAG	= magnitude of the current in amperes
СОМ	= array to store text from comment cards
CURI	= current on segment 1 in amperes
CVEL	= (velocity of light) (10 ⁻⁶) in meters/second
DELFRQ	<pre>= frequency increment (additive or multiplicative)</pre>
D PH	= far-field
	quantity)
DTH	= far-field $ heta$ angle increment in degrees (input
	quantity)

MAIN

-8-

D XNK]	= near-field observation point increments (input
DYNR }	quantities with multiple meanings see NE card)
dznr J	
EPH	= current component in direction \hat{t}_2 on patch
ЕРНА	= phase angle of EPH
E PHM	= magnitude of EPH
EPSC	= complex dielectric constant of ground $\epsilon_{c} = \epsilon_{r}$ -
	jσ/ωε ₀ .)
EPSCF	= ε_{c} read from file TAPE21
EPSR	$= \varepsilon_r$
EPSR2	= ε_r for outer ground region
ETH	= current component in direction \hat{t}_1 on patch
ETHA	= phase angle of ETH
ЕТНМ	= magnitude of ETH
ΕX	= \hat{x} component of current on a patch
EXTIM	= time at start of run (seconds)
£Υ	= \hat{y} component of current on a patch
ΕZ	= \hat{z} component of current on a patch
FJ	$=\sqrt{-1}$
FMHZ	= frequency in MHz
FMHZS	= frequency in MHz
FNORM	= multiply used array; stores impedances for printing of
	the normalized impedance or stores currents in the
	receiving pattern case for printing normalized
	receiving pattern
FR	= (next frequency)/(present frequency)
FR2	= (FR)(FR)
GNOR	= if non-zero, equals gain normalization factor (dB)
	from RP card
HPOL	= array containing polarization types (Hollerith)
IAVP	= input integer flag used in average gain logic (RP card)
IAX	= input integer flag specifying gain type (RP card)
1811	= location in array CM for start of storage of submatrix
	B when NGF is used
1011	= location in array CM for start of storage of submatrix
	C when NGF is used

-9-

IDII	=	location in CM for submatrix D
IEXK	=	flag to select the extended thin-wire kernel
IFAR	=	input integer flag specifying type of field
		calculation and type of ground system in far field
		(RP card)
IFLOW	=	integer flag used to distinguish various input
		sections
I FRQ	=	input integer flag specifying type of frequency
		stepping (FR card)
I GO	=	integer to indicate stage of completion of the
		solution
INC	=	incident field loop index
INOR	=	input integer flag used for normalized gain request
		(RP card)
I PD	=	input integer flag selects gain type for
		normalization (RP card)
I PED	-	input integer flag used for impedance normalization
		request (EX card)
I PTAG	=	input integer for print control equal to segment tag
		number (PT card)
I PTAGF	=	input integer for print control specifying segment
		placement in a set of equal tags (PT card)
I PTAGT	=	same function as IPTAGF (input, PT card)
IPTFLG	=	input integer flag specifying type of print control
		(PT card)
LPTAQ		
I PTAQF	=	same as above four variables but for PQ card
LPTAQT		
IPTFLQ		
IRESRV	#	length of array CM in complex numbers
IRNGF	-	storage in array CM that is reserved for later use
		when a NGF file is written
ISANT	=	array of segment numbers for voltage sources
ISAVE	=	segment number for normalized receiving pattern
		calculation

		+h
ISEG1 (I)	x	segment numbers of end 1 and end 2 of the i th
1SEG2(1)		network connection
ITMP1 to ITMP5	5 =	temporary storage
IX	Ξ	array for matrix pivot element information
1X11		location in CM of the start of an array in the NGF
		solution
IXTYP	3	excitation type from EX card
K COM	=	number of comment cards read
LDTAG	=	tag number of loaded segment
LDTAGF	=	number of first loaded segment in set of segments
		having given tag
LDTAGT	=	last loaded segment
LDTYP	=	loading type
LOADMX	=	maximum number of loading cards
MASYM	Ξ	flag to request matrix asymmetry calculation
MHZ	=	frequency loop index
MPCNT	=	counter for data cards
NCOUP	=	number of excitation points for coupling calculation
NCSEG	×	excitation segment for coupling calculation
NCTAG		
NEAR	=	increment option for near field points
NEQ	=	order of the primary interaction matrix
NEQ2	=	number of new unknowns in NGF mode
NETMX	=	maximum number of network data cards
NFEH	=	O for near E field, 1 for near H
NFRQ		number of frequency steps
NONET	=	number of network data cards
NORMF	=	dimension of FNORM
NPHI	=	number of phi steps in incident field
NPHIC	=	loop index for phi in incident field
NPRINT	Ŧ	print control flag for subroutine NETWK
NRX)		
NRY }	<u>~</u>	number of steps in near field evaluation loops
NRZ		
NSANT	=	number of voltage sources
NSMAX	=	maximum number of voltage sources

	NTHI	#	number of theta steps in incident field
	NTHIC	÷	loop index for theta in incident field
	ЬН	=	phase angle of current or charge (degrees)
	PHISS	=	initial ϕ value for incident field
	PIN	=	P_{in} = total power supplied to a structure by all voltage sources (Σ Re(VI*)/2). For a Hertzian dipole source P_{in} = $\eta(\pi/3) I \ell / \lambda ^2$.
	PLOSS	=	power lost in distributed and point structure loads
			in watts
	PNET	=	array contains Hollerith transmission line type
	RFLD	=	if non-zero, equal to input far-field observation
			distance in meters
	RK H	=	minimum separation for use of approximate
			interaction equations
	SCRWLT	=	input length of radials in radial wire screen (GN card) in meters
	SCRWRT	=	radius of wires in radial wire ground screen in meters
	SIG	=	conductivity of ground (σ in mhos/meter on GN card)
	S1G2	=	conductivity of second medium in mhos/meter (GN and GD card)
	ТА	=	π/180
	THETIS	=	initial θ for incident field
	THETS	=	initial 0 for radiated field
	TIM	=	matrix computation time (seconds)
	TMP1 to TMP6	=	temporary input variables
	XPR1 to XPR6	=	input quantities for incident field or Hertzian
			dipole illumination
	ZLC)		
	ZLI	=	input quantities for loading
	ZLR		Journeeron for fourting
	Z PNORM	=	impedance normalization quantity
CONST	ANTS		
	L.E-20	=	used as small value test

1.E-20 = used as small value test

1.745329252	=	π/180
2367.067	=	2πn ₀
59.96	=	1/(2πcε ₀) c/10 ⁶
299.8	=	c/10 ⁶

.

.

.

.

1	PROGRAM NEC(INPUT, TAPE5=INPUT, OUTPUT, TAPE11, TAPE12, TAPE13, TAPE14,	MA	1
2	1TAPE15, TAPE16, TAPE20, TAPE21)	MA	2
3 C			
4 C	NUMERICAL ELECTROMAGNETICS CODE (NEC2) DEVELOPED AT LAWRENCE	MA	3
5 Č	TVERVORE LED TVERVORE (NECZ) DEVELOPED AT LAWRENCE	MA	4
	LIVERMORE LAB., LIVERMORE, CA. (CONTACT G. BURKE, 415-422-8414)	MA	5
6 C	FILE CREATED 4/11/80.	MA	6
7 C		MA	7
8 C	***************************	MA	8
9 C	THIS COMPUTER CODE MATERIAL WAS PREPARED AS AN ACCOUNT OF WORK		
10 C		MA	9
11 C	SPONSORED BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED	МА	10
	STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF	MA	11
12 C	THEIR EMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR	MA	12
13 C	THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR	MA	13
14 C	ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY.	MA	14
15 C	COMPLETENESS OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT		
16 C	OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT	MA	15
17 C	THERE OF A THE AND A THE A	MA	16
	INFRINGE PRIVATELY-OWNED RIGHTS.	MA	17
18 C		MA	18
19	INTEGER AIN, ATST, PNET, HPOL	MA	19
20	COMPLEX CM,FJ,VSANT,ETH,EPH,ZRATI,CUR,CURI,ZARRAY,ZRATI2	MA	20
21	COMPLEX EX, EY, EZ, ZPED, VQD, VQDS, T1, Y11A, Y12A, EPSC, U, U2, XX1, XX2		
22	COMPLEX ARI, AR2, AR3, EPSCF, FRATI	MA	21
23		MA	22
	COMMON /DATA/ LD.N1.N2.N.NP.M1.M2.M.MP.X(300),Y(300),Z(300),	MA	23
24	1SI(300), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300),	MA	24
25	2ITAG(300), ICONX(300), WLAM, IPSYM	MA	25
26	COMMON /CMB/CM(4000)	MA	26
27	COMMON /MATPAR/ ICASE,NBLOKS,NPBLK,NLAST,NBLSYM,NPSYM,NLSYM,IMAT,	MA	
28	1 ICASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL		27
29	COMMON/SAVE/IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ	MA	28
30	COMMON SCONT (1000), RCOM (13, 3), EPSR, SIG, SCRWET, SCRWRT, FMHZ	MA	29
	COMMON /CRN1/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),	MA	30
31	1 CII(300).CUR(900)	MA	31
32	COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR,	МА	32
33	1 I PERF, 11, 12	MA	33
34	COMMON /ZLOAD/ ZARRAY(300),NLOAD,NLODF	MA	34
35	COMMON/YPARM/NCOUP, ICOUP, NCTAG(5), NCSEG(5), Y11A(5), Y12A(20)		
36	COMMON (SEC (AY(30) BY(30) (SY(30) (SO(3))) (SO(3)) (SO(3)	МА	35
	COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON,	MA	36
37	1 IPCON(10), NPCON	MA	37
38	COMMON/VSORC/VQD(30),VSANT(30),VQDS(30),IVQD(30),ISANT(30),	MA	38
39	1 IQDS(30), NVQD, NSANT, NQDS	MA	39
40	COMMON/NETCX/ZPED,PIN,PNLS,NEQ,NPEQ,NEQ2,NONET,NTSOL,NPRINT,	MA	40
41	1MASYM, ISEG1(30), ISEG2(30), X11R(30), X11I(30), X12R(30), X12I(30),		
42	1X22R(30),X22I(30),NTYP(30)	MA	41
43		MA	42
	COMMON/FPAT/NTH, NPH, IPD, IAVP, INOR, IAX, THETS, PHIS, DTH, DPH,	MA	43
44	1RFLD, GNOR, CLT, CHT, EPSR2, SIG2, IXTYP, XPR6, PINR, PNLR, PLOSS,	MA	44
45	INEAR, NFEH, NRX, NRY, NRZ, XNR, YNR, ZNR, DXNR, DYNR, DZNR	MA	45
46	COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),	MA	46
47	1DYA(3), XSA(3), YSA(3), NXA(3), NYA(3)	MA	47
48	COMMON/GWAV/U, U2, XX1, XX2, R1, R2, ZMH, ZPH	MA	48
49	DIMENSION CAB(1), SAB(1), X2(1), Y2(1), Z2(1)		
50	DIMENSION LDTYP(30),LDTAG(30),LDTAGF(30),LDTAGT(30),ZLR(30),	MA	49
51	(30), (20)	MA	50
	ZLI(30),ZLC(30)	MA	51
52	DIMENSION ATST(21), PNET(6), HPOL(3), IX(600)	MA	52
53	DIMENSION FNORM(200)	MA	53
54	DIMENSION T1X(1),T1Y(1),T1Z(1),T2X(1),T2Y(1),T2Z(1)	MA	54
55	EQUIVALENCE (CAB, ALP), (SAB, BET), (X2, SI), (Y2, ALP), (Z2, BET)	MA	55
56	EQUIVALENCE (TIX.SI).(TIY.ALP).(TIZ.BET).(TZX.ICON1).(TZY.ICON2).		
57	1 (T2Z, ITAG)	MA	56
58		MA	57
	DATA ATST/2HCE, 2HFR, 2HLD, 2HGN, 2HEX, 2HNT, 2HXQ, 2HNE, 2HGD, 2HRP, 2HCM,	MA	58
59	1 2HNX, 2HEN, 2HTL, 2HPT, 2HKH, 2HNH, 2HPQ, 2HEK, 2HWG, 2HCP/	MA	59
60	DATA HPOL/6HLINEAR, 5HRIGHT, 4HLEFT/	MA	60
61	DATA PNET/6H ,2H ,6HSTRAIG,2HHT,6HCROSSE,1HD/	ΜА	61
62	DATA TA/1.745329252E-02/,CVEL/299.8/	MA	62
63	DATA LOADMX, NSMAX, NETMX/30, 30, 30/, NORME/200/	MA	63

e .		
64	CALL SECOND(EXTIM)	MA 64
65	FJ=(0.,1.)	MA 65
66	LD=300	MA 66
67	NXA(1)=0	
68	IRESRV=4000	MA 67
69 1	KCOM=0	MA 68
70 2	KCOM=KCOM+1	MA 69
71	IF (KCOM.GT.5) KCOM=5	MA 70
72		MA 71
	READ(5,125)AIN, (COM(I,KCOM), I=1,13)	MA 72
73	IF(KCOM.GT.1)GO TO 3	MA 73
74	PRINT 126	MA 74
75	PRINT 127	MA 75
76	PRINT 128	MA 76
77 3	PRINT 129, (COM(I,KCOM),I=1,13)	MA 77
78	IF (AIN.EQ.ATST(11)) GO TO 2	
79	IF (AIN.EQ.ATST(1)) GO TO 4	MA 78
80	PRINT 130	MA 79
81	STOP	MA 80
		MA 81
82 4	CONTINUE	MA 82
83	DO 5 I=1.LD	MA 83
84 5	ZARRAY(1)=(0.,0.)	MA 84
85	MPCNT=0	MA 85
86	IMAT=0	MA 86
87 C		
88 C	SET UP GEOMETRY DATA IN SUBROUTINE DATAGN	
89 C	SET OF SECONETRY DATA IN SUBROUTINE DATACH	MA 88
		MA 89
90	CALL DATAGN	MA 90
91	IFLOW=1	MA 91
92	IF(IMAT.EQ.0)GO TO 325	MA 92
93 C		MA 93
94 C	CORE ALLOCATION FOR ARRAYS B, C, AND D FOR N.G.F. SOLUTION	MA 94
95 C		MA 95
96	NEQ=N1+2*M1	MA 96
96 97	NEQ=N1+2*M1 NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON	MA 96
97	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON	MA 97
97 98	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11)	MA 97 Ma 98
97 98 99	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6	MA 97 Ma 98 Ma 99
97 98 99 100 326	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M	MA 97 Ma 98
97 98 99 100 326 101	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0	MA 97 Ma 98 Ma 99
97 98 99 100 326	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M	MA 97 MA 98 MA 99 MA 100
97 98 99 100 326 101	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0	MA 97 MA 98 MA 99 MA 100 MA 101 MA 102
97 98 99 100 326 101 102	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1	MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103
97 98 99 100 326 101 102 103	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1	MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104
97 98 99 100 325 101 102 103 104 105	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1	MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105
97 98 99 100 326 101 102 103 104 105 106	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0	MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106
97 98 99 100 326 101 102 103 104 105 106 107 6	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP	MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 107
97 98 99 100 326 101 102 103 104 105 106 107 6 108	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0	MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 107 MA 108
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135	MA 97 MA 98 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 107 MA 108 MA 109
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP	 MA 97 MA 98 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 108 MA 109 MA 110
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS	MA 97 MA 98 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 107 MA 108 MA 109 MA 110
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135	 MA 97 MA 98 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 108 MA 109 MA 110
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS	MA 97 MA 98 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 107 MA 108 MA 109 MA 110
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=O NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 111 MA 112
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=O NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 110 MA 111 MA 112 MA 113
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 110 MA 111 MA 112 MA 113 MA 114 MA 115
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=O NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=O	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 110 MA 111 MA 112 MA 113 MA 114 MA 115 MA 116
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=O NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=O IXTYP=0	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 115 MA 116 MA 117
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRY,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=0 NLOAD=0	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 115 MA 116 MA 117 MA 118
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRY,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=0 NLOAD=0 NONET=0	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 115 MA 116 MA 117 MA 118 MA 119
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120	<pre>NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRY,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=0 NLOAD=0 NONET=0 NEAR=-1</pre>	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 115 MA 116 MA 117 MA 118 MA 119 MA 120
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120 121	<pre>NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=0 NLOAD=0 NONET=0 NEAR=-1 IPTFLG=-2</pre>	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 109 MA 111 MA 111 MA 112 MA 113 MA 115 MA 116 MA 117 MA 118 MA 119 MA 120 MA 121
97 98 99 100 325 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120 121 122	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 IC11=1 ICASX=O NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=O NLOAD=0 NONET=0 NEAR=-1 IPTFLG=-2 IPTFLQ=-1	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 109 MA 110 MA 111 MA 1112 MA 1113 MA 114 MA 115 MA 116 MA 117 MA 118 MA 119 MA 120 MA 121 MA 122
97 98 99 100 326 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120 121	<pre>NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=0 NLOAD=0 NONET=0 NEAR=-1 IPTFLG=-2</pre>	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 108 MA 109 MA 110 MA 111 MA 111 MA 111 MA 1114 MA 115 MA 116 MA 116 MA 117 MA 118 MA 119 MA 120 MA 121 MA 122 MA 122 MA 123
97 98 99 100 325 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120 121 122	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 IC11=1 ICASX=O NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=O NLOAD=0 NONET=0 NEAR=-1 IPTFLG=-2 IPTFLQ=-1	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 117 MA 117 MA 118 MA 119 MA 120 MA 121 MA 122 MA 123 MA 124
97 98 99 100 325 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120 121 122 123	NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 IC11=1 ICASX=O NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=O IXTYP=O NLOAD=O NONE T=O NEAR=-1 IPTFLQ=-1 IFAR=-1	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 115 MA 116 MA 117 MA 118 MA 120 MA 121 MA 122 MA 122 MA 123 MA 124 MA 125
97 98 99 100 325 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120 121 122 123 124	<pre>NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=O IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=0 NLOAD=0 NOAD=0 NOAD=0 NOAD=0 NEAR=-1 IPTFLQ=-2 IPTFLQ=-1 IFAR=-1 ZRATI=(1.,0.)</pre>	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 117 MA 117 MA 118 MA 119 MA 120 MA 121 MA 122 MA 123 MA 124
97 98 99 100 325 101 102 103 104 105 106 107 6 108 109 C 110 C 111 C 112 113 114 115 116 117 118 119 120 121 122 123 124 125	<pre>NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON CALL FBNGF(NEQ,NEQ2,IRESRV,IB11,IC11,ID11,IX11) GO TO 6 NEQ=N+2*M NEQ2=0 IB11=1 IC11=1 ID11=1 IX11=1 ICASX=0 NPEQ=NP+2*MP PRINT 135 DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS IGO=1 FMHZS=CVEL NFRQ=1 RKH=1. IEXK=0 IXTYP=0 NLOAD=0 NONET=0 NEAR=-1 IPTFLC=-2 IPTFLQ=-1 IFAR=-1 ZRATI=(1.,0.) IPED=0</pre>	 MA 97 MA 98 MA 99 MA 100 MA 101 MA 102 MA 103 MA 104 MA 105 MA 106 MA 106 MA 107 MA 108 MA 109 MA 108 MA 109 MA 110 MA 111 MA 111 MA 112 MA 113 MA 114 MA 115 MA 116 MA 117 MA 118 MA 120 MA 121 MA 122 MA 122 MA 123 MA 124 MA 125

128	ICOUP=0	34.6	128
	IF(ICASX.GT.0)GO TO 14		
129			129
130	FMHZ=CVEL		130
131	NLODF=0 ,	MA	131
132	KSYMP=1	MA	132
133	NRADL=0	MA	133
134	IPERF=0	MA	134
135 C			135
136 C	MAIN INPUT SECTION - STANDARD READ STATEMENT - JUMPS TO APPRO-		136
137 C	PRIATE SECTION FOR SPECIFIC PARAMETER SET UP		137
138 C			138
	READ(5,136)AIN,ITMP1,ITMP2,ITMP3,ITMP4,TMP1,TMP2,TMP3,TMP4,TMP5.		
139 14			139
140	1 TMP6		140
141	MPCNT=MPCNT+1		141
142	PRINT 137, MPCNT,AIN,ITMP1,ITMP2,ITMP3,ITMP4,TMP1,TMP2,TMP3,TMP4,	MA	142
143	1 TMP5, TMP6	MA	143
144	IF (AIN.EQ.ATST(2)) GO TO 16	MA	144
145	IF (AIN.EQ.ATST(3)) GO TO 17		145
146	IF (AIN.EQ.ATST(4)) GO TO 21		146
147	IF (AIN.EQ.ATST(5)) GO TO 24		147
148	IF $(AIN.EQ.ATST(6))$ GO TO 28		148
149	IF (AIN.EQ.ATST(14)) GO TO 28		149
150	IF (AIN.EQ.ATST(15)) GO TO 31		150
151	IF (AIN.EQ.ATST(18)) GO TO 319	MA	151
152	IF (AIN.EQ.ATST(7)) GO TO 37	MA	152
153	IF (AIN.EQ.ATST(8)) GO TO 32	MA	153
154	IF (AIN.EQ.ATST(17)) GO TO 208	MA	154
155	IF (AIN.EQ.ATST(9)) GO TO 34	МА	155
t56	IF (AIN.EQ.ATST(10)) GO TO 36		156
157	IF (AIN.EQ.ATST(16)) GO TO 305		157
158	IF $(AIN.EQ.ATST(19))$ GO TO 320		158
159	IF $(AIN,EQ,ATST(12))$ GO TO 1		
			159
160	IF (AIN.EQ.ATST(20)) GO TO 322		160
161	IF (AIN.EQ.ATST(21)) GO TO 304		161
162	IF (AIN.NE.ATST(13)) GO TO 15	MA	162
163	CALL SECOND(TMP1)	MA	163
164	TMP1=TMP1-EXTIM	MA	164
165	PRINT 201, TMP1	MA	165
166	STOP	MA	166
167 15	PRINT 138		167
168	STOP		168
169 C			169
	FREQUENCY PARAMETERS		
170 C	FREQUENCE FARAMETERS		170
171 C			171
172 16	IFRQ=ITMP1		172
173	IF(ICASX.EQ.0)GO TO 8		173
174	PRINT 303, AIN	MA	174
175	STOP	MA	175
176 8	NFRQ=ITMP2	MA	176
177	IF (NFRQ.EQ.O) NFRQ=1	MA	177
178	FMHZ=TMP1	ма	178
179	DELFRQ=TMP2		179
180	IF(IPED.EQ.1)ZPNORM=0.		180
181	IGO=1		181
182	IFLOW=1		182
			•
183	GO TO 14		183
184 C			184
185 C	MATRIX INTEGRATION LIMIT		185
1 86 C		MA	186
187 305	RKH=TMP1	MA	187
188	IF(IGO.GT.2)IGO=2	MA	188
189	IFLOW=1	МА	189
190	GO TO 14		190
191 C	·		191

192 C EXTENDED THIN WIRE KERNEL OPTION MA 192 193 C MA 193 194 320 IEXK=1 MA 194 195 IF(ITMP1.EQ.-1)IEXK=0 MA 195 IF(IGO.GT.2)IGO=2 196 MA 196 197 IFLOW=1 ~ MA 197 198 GO TO 14 MA 198 199 C MA 199 MAXIMUM COUPLING BETWEEN ANTENNAS 200 C MA 200 201 C MA 201 202 304 IF(IFLOW.NE.2)NCOUP=0 MA 202 203 ICOUP=0 MA 203 204 IFLOW=2 MA 204 205 IF(ITMP2.EQ.0)GO TO 14 MA 205 206 NCOUP=NCOUP+1 MA 206 207 IF(NCOUP.GT.5)GO TO 312 MA 207 208 NCTAG(NCOUP)=ITMP1 MA 208 209 NCSEG(NCOUP)=ITMP2 MA 209 210 IF(ITMP4.EQ.0)GO TO 14 MA 210 211 NCOUP=NCOUP+1 MA 211 212 IF(NCOUP.GT.5)GO TO 312 MA 212 213 NCTAG(NCOUP)=ITMP3 MA 213 214 NCSEG(NCOUP)=ITMP4 MA 214 215 GO TO 14 MA 215 216 312 PRINT 313 MA 216 217 STOP MA 217 218 C MA 218 219 C LOADING PARAMETERS MA 219 220 C MA 220 221 17 IF (IFLOW.EQ.3) GO TO 18 MA 221 222 NLOAD=0 MA 222 223 IFLOW=3 MA 223 224 IF (IGO.GT.2) IGO=2 MA 224 225 IF (ITMP1.EQ.(-1)) GO TO 14 MA 225 NLOAD=NLOAD+1 226 18 MA 226 227 IF (NLOAD.LE.LOADMX) GO TO 19 MA 227 228 PRINT 139 MA 228 229 STOP MA 229 LDTYP(NLOAD)=ITMP1 230 19 MA 230 231 LDTAG(NLOAD)=ITMP2 MA 231 232 IF (ITMP4.EQ.0) ITMP4=ITMP3 MA 232 233 LDTAGF(NLOAD)=ITMP3 MA 233 234 LDTAGT(NLOAD)=ITMP4 MA 234 235 IF (ITMP4.GE.ITMP3) GO TO 20 MA 235 236 PRINT 140, NLOAD, ITMP3, ITMP4 MA 236 237 STOP MA 237 238 20 ZLR(NLOAD)=TMP1 MA 238 239 ZLI(NLOAD)=TMP2 MA 239 240 ZLC(NLOAD)=TMP3 MA 240 241 GO TO 14 MA 241 242 C MA 242 243 C GROUND PARAMETERS UNDER THE ANTENNA MA 243 244 C MA 244 245 21 IFLOW=4 MA 245 MA 246 246 IF(ICASX.EQ.0)GO TO 10 MA 247 247 PRINT 303,AIN MA 248 248 STOP MA 249 249 10 IF (IGO.GT.2) IGO=2 MA 250 250 IF (ITMP1.NE.(-1)) GO TO 22 MA 251 251 KSYMP=1 MA 252 252 NRADL=0 MA 253 IPERF=0 253 MA 254 254 GO TO 14 255 22 IPERF=ITMP1 MA 255

256		
257	NRADL=ITMP2	MA 256
258		MA 257
259	EPSR=TMP1	MA 258
260	SIG=TMP2	MA 259
	IF (NRADL.EQ.0) GO TO 23	* MA 260
261	IF(IPERF.NE.2)GO TO 314	MA 261
262	PRINT 390	MA 262
263 264 314		MA 263
264 314	SCRWLT=TMP3	MA 264
265	SCRWRT=TMP4	MA 265
267 23		MA 266
	EPSR2=TMP3	MA 267
268 269	SIG2≃TMP4	MA 268
		MA 269
270	CHT=TMP6	MA 270
271	GO TO 14	MA 271
272 C		MA 272
273 C	EXCITATION PARAMETERS	MA 273
274 C		MA 274
275 24	IF (IFLOW.EQ.5) GO TO 25	MA 275
276	NSANT=0	MA 276
277	NVQD=0	MA 277
278	IPED=0	MA 278
279	IFLOW=5	MA 279
280	IF (IGO.GT.3) IGO=3	MA 280
281 25	MASYM=ITMP4/10	MA 281
282	IF (ITMP1.GT.O.AND.ITMP1.NE.5) GO TO 27	MA 282
283	IXTYP=ITMP1	MA 283
284	NTSOL=0	MA 284
285	IF(IXTYP.EQ.0)GO TO 205	MA 285
286	NVQD=NVQD+1	MA 286
287	IF(NVQD.GT.NSMAX)GO TO 206	MA 287
288	IVQD(NVQD)=ISEGNO(ITMP2,ITMP3)	MA 288
289	VQD(NVQD)=CMPLX(TMP1,TMP2)	MA 289
290	IF(CABS(VQD(NVQD)).LT.1.E-20)VQD(NVQD)=(1.,0.)	MA 290
291	GO TO 207	MA 291
292 205	NSANT=NSANT+1	MA 292
293	IF (NSANT.LE.NSMAX) GO TO 26	MA 293
294 206	PRINT 141	MA 294
295	STOP	MA 295
296 26	ISANT(NSANT)=ISEGNO(ITMP2,ITMP3)	MA 296
297	VSANT(NSANT)=CMPLX(TMP1,TMP2)	MA 297
298	IF (CABS(VSANT(NSANT)).LT.1.E-20) VSANT(NSANT)=(1.,0.)	MA 298
299 207	IPED=ITMP4-MASYM*10	MA 299
300	ZPNORM=TMP3	MA 300
301	IF (IPED.EQ.1.AND.ZPNORM.GT.O) IPED=2	MA 301
302	GO TO 14	MA 302
303 27	IF (IXTYP.EQ.O.OR.IXTYP.EQ.5) NTSOL=0	MA 303
304	IXTYP=ITMP1	MA 304
305	NTHI=ITMP2	MA 305
306	NPHI=ITMP3	MA 306
307	XPR1=TMP1	MA 307
308	XPR2=TMP2	MA 308
309	XPR3=TMP3	MA 309
310		MA 310
311	XPR5=TMP5	MA 311
312	XPR6≖TMP6	MA 312
313	NSANT=0	MA 313
314	NVQD=0	MA 314
315	THETIS=XPR1	MA 315
316	PHISS=XPR2	MA 316
317	GO TO 14	MA 317
318 C		MA 318
319 C	NETWORK PARAMETERS	MA 319

320 C		
321 28	IF (IFLOW.EQ.6) GO TO 29	MA 320
322	NONET=0	MA 321
323	NTSOL=0	MA 322
324	IFLOW=6	MA 323
325	IF (IG0.GT.3) IG0=3	MA 324
326	IF (ITMP2.EQ.(-1)) GO TO 14	MA 325
327 29	NONET=NONET+1	MA 326
328	IF (NONET.LE.NETMX) GO TO 30	MA 327
329	PRINT 142	MA 328 MA 329
330	STOP	MA 329 MA 330
331 30	NTYP(NONET)=2	MA 330
332	IF $(AIN.EQ.ATST(6))$ NTYP(NONET)=1	MA 337
333	ISEG1(NONET)=ISEGNO(ITMP1,ITMP2)	MA 333
334	ISEG2(NONET)=ISEGNO(ITMP3,ITMP4)	MA 334
335	X11R(NONET)=TMP1	MA 335
336	X11I(NONET)=TMP2	MA 336
337	X12R(NONET)=TMP3	MA 337
338	X12I(NONET)=TMP4	MA 338
339	X22R(NONET)=TMP5	MA 339
340	X22I(NONET)=TMP6	MA 340
341	IF (NTYP(NONET).EQ.1.OR.TMP1.GT.0.) GO TO 14	MA 341
342	NTYP(NONET)=3	MA 342
343	X11R(NONET)=-TMP1	MA 343
344	CO TO 14	MA 344
345 C		MA 345
346 C	PRINT CONTROL FOR CURRENT	MA 346
347 C		MA 347
348 31	IPTFLG=ITMP1	MA 348
349	IPTAG=ITMP2	MA 349
350	IPTAGF=ITMP3	MA 350
351	IPTAGT=ITMP4	MA 351
352	IF(ITMP3.EQ.O.AND.IPTFLG.NE1)IPTFLG=-2	MA 352
353	IF (ITMP4.EQ.0) IPTAGT=IPTAGF	MA 353
354	GO TO 14	MA 354
355 C		MA 355
356 C	PRINT CONTROL FOR CHARGE	MA 356
357 C		MA 357
358 319	IPTFLQ=ITMP1	MA 358
359	IPTAQ=ITMP2	MA 359
360	IPTAQF=ITMP3	MA 360
361	IPTAQT=ITMP4	MA 361
362	IF(ITMP3.EQ.O.AND.IPTFLQ.NE1)IPTFLQ=-2	MA 362
363	IF(ITMP4.EQ.0)IPTAQT=IPTAQF	MA 363
364	GO TO 14	MA 364
365 C	NEAD ETELD CALOURATION DADAVETEDS	MA 365
366 C 367 C	NEAR FIELD CALCULATION PARAMETERS	MA 366
368 208	NFEH=1	MA 367
369	GO TO 209	MA 368
370 32	NFEH=0	MA 369 MA 370
371 209	IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33	MA 370 MA 371
372	PRINT 143	MA 372
373 33	NEAR=ITMP1	MA 373
374	NRX=ITMP2	MA 374
375	NRY=ITMP3	MA 375
376	NRZ=ITMP4	MA 376
377	XNR=TMP1	MA 377
378	YNR=TMP2	MA 378
379	ZNR=TMP3	MA 379
380	DXNR=TMP4	MA 380
381	DYNR=TMP5	MA 381
382	DZNR≂TMP6	MA 382
383	IFLOW=8	MA 383

384	IF (NFRQ.NE.1) GO TO 14	MA	384
385	GO TO (41,46,53,71,72), IGO	MA	385
386 C		MA	386
387 C	GROUND REPRESENTATION	MA	387
388 C		MA	388
389 34	EPSR2=TMP1	r MA	389
390	SIG2=TMP2	MA	390
391	CLT=TMP3	МА	391
392	CHT=TMP4	МА	392
393	IFLOW=9	MA	393
394	GO TO 14	МА	394
395 C		MA	395
396 C	STANDARD OBSERVATION ANGLE PARAMETERS	MA	396
397 C		МА	397
398 36	IFAR=ITMP1	МА	398
399	NTH=ITMP2		399
400	NPH=ITMP3		400
401	IF (NTH.EQ.O) NTH∺1		401
402	IF (NPH.EQ.0) NPH=1		402
403	IPD=ITMP4/10		403
404	IAVP=ITMP4-IPD*10		404
405	INOR=IPD/10		405
406	IPD=IPD-INOR*10		406
407	IAX=INOR/10		407
408	INOR-INOR-IAX*10		408
409	IF (IAX.NE.O) IAX=1		409
410	IF (IPD.NE.O) IPD=1		410
411	IF (NTH.LT.2.OR.NPH.LT.2) IAVP=0		411
412	IF (IFAR.EQ.1) IAVP=0		412
413	THETS=TMP1		413
414	PHIS=TMP2		414
415	DTH=TMP3		41.5
416	DPH=TMP4		416
417	RFLD=TMP5		417
418	GNOR=TMP6		418
419	IFLOW=10		419
420	GO TO (41,46,53,71,78), IGO		420
421 C	00 10 (41,40,33,77,70); 100		420
422 C	WRITE NUMERICAL GREEN'S FUNCTION TAPE		422
423 C	WRITE NUMERICAE OREEN 3 FONOTION TATE		423
424 322	IFLOW=12		
424 522	IF LOW-12 IF(ICASX.EQ.0)GO TO 301		424 425
425	PRINT 302		
427	STOP		426
428 301	IRNGF=IRESRV/2		427
			428
429 430 C	GO TO (41,46,52,52,52),IGO		429.
430 C 431 C	EXECUTE CARD - CALC. INCLUDING RADIATED FIELDS		430
	EXECUTE CARD - CALC, INCLUDING RADIATED FIELDS		431
432 C 433 37	IF (IFLOW.EQ.10.AND.ITMP1.EQ.0) GO TO 14		432
			433
434 435	IF (NFRQ.EQ.1.AND.IIMP1.EQ.0.AND.IFLOW.GT.7) GO TO 14 IF (ITMP1.NE.0) GO TO 39		434
435	IF (IFLOW.GT.7) GO TO 38		435
436	IF (IFLOW.GI.7) GO TO 38 IFLOW=7		436
437	GO TO 40		437
438 439 38	IFLOW=11		438
439 38	GO TO 40		439
440 441 39	IFAR=0		440
441 59			441
442	RFLD=0		442
	IPD=0 IAVR=0		443
444	IAVP=0 TNOR−0		444
445			445
446 447	IAX=0 NTH=91		446
	(())=3)	ма	447

448		NPH=1	МА	448
449		THETS=0.		449
450		PHIS=0.		450
451		DTH≂1.0		451
452		DPH=0.		452
453		IF (ITMP1.EQ.2) PHIS=90.		453
454		IF (ITMP1.NE.3) GO TO 40		454
455		NPH=2		455
456		DPH=90.		456
457	40	GO TO (41,46,53,71,78), IGO		
458	С			457
459	с	END OF THE MAIN INPUT SECTION		458
460		the of the MAIN IN OF SECTION		459
461	-	BEGINNING OF THE FREQUENCY DO LOOP		460
462		SECENTIAL OF THE TREQUENCE BO LOOP		461
463		MHZ=1		462
464				463
465	v	TECTHAT SO OCALL SPLOCK (NDSO NSO IDSORV IDVISE TRONK)		464
466	40	IF(IMAT.EQ.0)CALL FBLOCK(NPEQ,NEQ,IRESRV,IRNGF,IPSYM)	MA	465
467	42	IF (MHZ.EQ.1) GO TO 44	MA	466
		IF (IFRQ.EQ.1) GO TO 43	MA	467
468		FMHZ=FMHZ+DELFRQ	MA	468
469		GO TO 44	MA	469
470		FMHZ=FMHZ*DELFRQ	MA	470
471	44	FR=FMHZ/FMHZS	MA	471
472		WLAM=CVEL/FMHZ	MA	472
473		PRINT 145, FMHZ,WLAM	MA	473
474		PRINT 196,RKH	MA	474
475		IF(IEXK.EQ.1)PRINT 321	MA	475
476	С	FREQUENCY SCALING OF GEOMETRIC PARAMETERS		476
477		FMHZS=FMHZ		477
478		IF(N.EQ.0)GO TO 306		478
479		DO 45 I=1,N		479
480		X(I)=X(I)*FR		480
481		Y(I)=Y(I) •FR		481
482		Z(I) = Z(I) + FR		482
483		$SI(I)=SI(I) \cdot FR$		483
484	45	BI(I)=BI(I)•FR		
485		IF(M.EQ.0)GO TO 307		484
486		FR2=FR*FR		485
487		J=LD+1		486
488		DO 245 I=1,M		487
489		J=J-1		488
490				489
491		X(J) = X(J) + FR		490
		$Y(J) = Y(J) \bullet FR$	MA	491
492	5 .46	Z(J)=Z(J) + FR	MA	492
493		BI(J)=BI(J)•FR2	MA	493
494			MA	494
495		STRUCTURE SEGMENT LOADING	MA	495
496	46	PRINT 146	MA	496
497		IF(NLOAD.NE.O) CALL LOAD(LDTYP,LDTAG,LDTAGF,LDTAGT,ZLR,ZLI,ZLC)	MA	497
498		IF(NLOAD.EQ.O.AND.NLODF.EQ.O)PRINT 147	MA	498
499		IF(NLOAD.EQ.O.AND.NLODF.NE.O)PRINT 327	MA	499
500	С	GROUND PARAMETER	MA	500
501		PRINT 148	MA	501
502		IF (KSYMP.EQ.1) GO TO 49		502
503		FRATI=(1.,0.)		503
504		IF (IPERF.EQ.1) GO TO 48		504
505		IF(SIG.LT.O.)SIG=-SIG/(59.96*WLAM)		505
506		EPSC=CMPLX(EPSR,-SIG*WLAM*59.96)		506
507		ZRATI=1./CSQRT(EPSC)		507
508		U=ZRATI		508
509		U2=U•U		509
510		IF (NRADL.EQ.0) GO TO 47		510
511		SCRWL=SCRWLT/WLAM		511

,

512		SCRWR=SCRWRT/WLAM	МА	512
513		T1=FJ*2367.067/FLOAT(NRADL)	MA	513
514		T2=SCRWR*FLOAT(NRADL)	MA	514
515		PRINT 170, NRADL, SCRWLT, SCRWRT	MA	515
516		PRINT 149	MA	516
517	47	IF(IPERF.EQ.2)GO TO 328	MA	517
518		PRINT 391	MA	518
519		GO TO 329	MA	519
	328	IF (NXA(1).EQ.0)READ(21)AR1, AR2, AR3, EPSCF, DXA, DYA, XSA, YSA, NXA, NYA	MA	520
521 522		FRATI=(EPSC-1.)/(EPSC+1.)	МА	521
523		IF(CABS((EPSCF-EPSC)/EPSC).LT.1.E-3)GO TO 330 PRINT 393,EPSCF,EPSC		522
523		STOP		523
	330	PRINT 392		524
	329	PRINT 150, EPSR, SIG, EPSC		525
527		GO TO 50		526
528	48	PRINT 151		527
529		GO TO 50		528
530	49	PRINT 152		529
531		CONTINUE		530
532	с••			531 532
533	с	FILL AND FACTOR PRIMARY INTERACTION MATRIX		533
534	С			534
535		CALL SECOND (TIM1)		535
536		IF(ICASX.NE.O)GO TO 324		536
537		CALL CMSET(NEQ,CM,RKH,IEXK)		537
538		CALL SECOND (TIM2)		538
539		TIM=TIM2-TIM1		539
540		CALL FACTRS(NPEQ,NEQ,CM,IP,IX,11,12,13,14)		540
541		GO TO 323		541
542				542
543		N.G.F FILL B, C, AND D AND FACTOR D-C(INV(A)B)		543
544			MA	544
	324	CALL CMNGF(CM(IB11),CM(IC11),CM(ID11),NPBX,NEQ,NEQ2,RKH,IEXK)	МА	545
546		CALL SECOND (TIM2)	MA	546
547		TIM=TIM2-TIM1	MA	547
548		CALL FACGF(CM, CM(IB11), CM(IC11), CM(ID11), CM(IX11), IP, IX, NP, N1, MP,	MA	548
549		1M1,NEQ,NEQ2)	MA	549
	323	CALL SECOND (TIM1)	MA	550
551		TIM2=TIM1-TIM2	MA	551
552 553		PRINT 153. TIM, TIM2		552
554		IGO=3 NTSOL=0		553
555		IF(IFLOW.NE.12)GO TO 53		554
556	C	WRITE N.G.F. FILE		555
557		CALL GFOUT		556
558	92	GO TO 14		557
559	с			558
560		EXCITATION SET UP (RIGHT HAND SIDE, -E INC.)		559
561		and initial set of (niton) name side, "E INC.)		560
562		NTHIC=1		561
563		NPHIC=1		562
564		INC=1		563 564
565		NPRINT=0		565
566	54	IF (IXTYP.EQ.O.OR.IXTYP.EQ.5) GO TO 56		566
567		IF (IPTFLG.LE.O.OR.IXTYP.EQ.4) PRINT 154		567
568		TMP5=TA*XPR5		568
569		TMP4=TA*XPR4		569
570		IF (IXTYP.NE.4) GO TO 55		570
571		TMP1=XPR1/WLAM		571
572		TMP2=XPR2/WLAM		572
573		TMP3=XPR3/WLAM		573
574		TMP6=XPR6/(WLAM*WLAM)		574
575		PRINT 156, XPR1, XPR2, XPR3, XPR4, XPR5, XPR6		575

GO TO 56	MA 576
TMP1=TA*XPR1	
TMP2=TA*XPR2	MA 577
	MA 578
TMP3=TA*XPR3	MA 579
TMP6=XPR6	MA 580
IF (IPTFLG.LE.O) PRINT 155, XPR1,XPR2,XPR3,HPOL(IXTYP),XPR6	MA 581
CALL ETMNS (TMP1, TMP2, TMP3, TMP4, TMP5, TMP6, IXTYP, CUR)	MA 582
	MA 583
MATRIX SOLVING (NETWK CALLS SOLVES)	
MATRIX SOLVING (NEIWA CALLS SOLVES)	MA 584
	MA 585
IF (NONET.EQ.0.OR.INC.GT.1) GO TO 60	MA 586
PRINT 158	MA 587
ITMP3=0	MA 588
ITMP1=NTYP(1)	
	MA 589
DO 59 I=1,2	MA 590
IF (ITMP1.EQ.3) ITMP1=2	MA 591
IF (ITMP1.EQ.2) PRINT 159	MA 592
IF (ITMP1.EQ.1) PRINT 160	MA 593
DO 58 J=1,NONET	MA 594
ITMP2=NTYP(J)	
IF ((ITMP2/ITMP1).EQ.1) GO TO 57	MA 595
	MA 596
ITMP3=ITMP2	MA 597
GO TO 58	MA 598
ITMP4=ISEG1(J)	MA 599
ITMP5=ISEG2(J)	MA 600
IF (ITMP2.GE.2.AND.X11I(J).LE.O.) X11I(J)=WLAM*SQRT((X(ITMP5)-	MA 601
1 X(ITMP4))**2+(Y(ITMP5)-Y(ITMP4))**2+(Z(ITMP5)-Z(ITMP4))**2)	
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	MA 602
PRINT 157. ITAG(ITMP4), ITMP4, ITAG(ITMP5), ITMP5, X11R(J), X11I(J),	MA 603
1X12R(J),X12I(J),X22R(J),X22I(J),PNET(2*ITMP2-1),PNET(2*ITMP2)	MA 604
CONTINUE	MA 605
IF (ITMP3.EQ.0) GO TO 60	MA 606
ITMP1=ITMP3	MA 607
CONTINUE	
	MA 608
CONTINUE	MA 609
IF (INC.GT.1.AND.IPTFLG.GT.0) NPRINT=1	MA 610
CALL NETWK(CM,CM(IB11),CM(IC11),CM(ID11),IP,CUR)	MA 611
NTSOL=1	MA 612
IF (IPED.EQ.0) GO TO 61	MA 613
ITMP1=MHZ+4*(MHZ-1)	
	MA 614
IF (ITMP1.GT.(NORMF-3)) GO TO 61	MA 615
FNORM(ITMP1)=REAL(ZPED)	MA 615
FNORM(ITMP1+1)=AIMAG(ZPED)	MA 617
FNORM(ITMP1+2)=CABS(ZPED)	MA 618
FNORM(ITMP1+3)=CANG(ZPED)	MA 619
IF (IPED.EQ.2) GO TO 61	
	MA 620
IF (FNORM(ITMP1+2).GT.ZPNORM) ZPNORM=FNORM(ITMP1+2)	MA 621
CONTINUE	MA 622
	MA 623
PRINTING STRUCTURE CURRENTS	MA 624
	MA 625
IF(N.EQ.0)G0 TO 308	MA 626
IF (IPTFLG.EQ.(-1)) GO TO 63	
	MA 627
IF (IPTFLG.GT.0) GO TO 62	MA 628
PRINT 161	MA 629
PRINT 162	MA 630
GO TO 63	MA 631
IF (IPTFLG.EQ.3.OR.INC.GT.1) GO TO 63	MA 632
PRINT 163, XPR3, HPOL(IXTYP), XPR6	MA 633
	MA 634

577 55

634 63

PLOSS=0.

JUMP=IPTFLG+1

CURI=CUR(I) *WLAM

CMAG=CABS(CURI)

00 69 I=1.N

ITMP1=0

MAIN

MA 634 MA 635

MA 636

MA 637 MA 638

MA 639

<u></u>		
640	PH=CANG(CURI)	MA 640
641	IF (NLOAD.EQ.O.AND.NLODF.EQ.O) GO TO 64	MA 641
642	IF (ABS(REAL(ZARRAY(I))).LT.1.E-20) GO TO 64	MA 642
643	PLOSS=PLOSS+.5 CMAG CMAG REAL(ZARRAY(I)) SI(I)	MA 643
644 64 645 65	IF (JUMP) 68,69,65	MA 644
646	IF (IPTAG.EQ.0) GO TO 66	MA 645
647 66	IF (ITAG(I).NE.IPTAG) GO TO 69 ITMP1=ITMP1+1	MA 646
648		MA 647
649	IF (ITMP1.LT.IPTAGF.OR.ITMP1.GT.IPTAGT) GO TO 69 IF (IPTFLG.EQ.O) GO TO 68	MA 648
650	IF (IPTFLG.LT.2.OR.INC.GT.NORMF) GO TO 67	MA 649
651	FNORM(INC)=CMAG	MA 650
652	ISAVE=I	MA 651
653 67	IF (IPTFLG.NE.3) PRINT 164, XPR1, XPR2, CMAG, PH, I	MA 652
654	GO TO 69	MA 653
655 68	PRINT 165, I, ITAG(I), X(I), Y(I), Z(I), SI(I), CURI, CMAG, PH	MA 654
656 69	CONTINUE	MA 655
657	IF(IPTFLQ.EQ.(-1))GO TO 308	MA 656 Ma 657
658	PRINT 315	MA 658
659	ITMP1=0	MA 658
660	FR=1.E-6/FMHZ	MA 660
661	DO 316 I=1,N	MA 661
662	IF(IPTFLQ.EQ.(-2))GO TO 318	MA 662
663	IF(IPTAQ.EQ.0)GO TO 317	MA 663
664	IF(ITAG(I).NE.IPTAQ)GO TO 316	MA 664
665 317	ITMP1=ITMP1+1	MA 665
666 667 318	IF(ITMP1.LT.IPTAQF.OR.ITMP1.GT.IPTAQT)GO TO 316	MA 666
668	CURI=FR*CMPLX(-BII(I),BIR(I)) CMAG=CABS(CURI)	MA 667
669	PH=CANG(CURI)	MA 668
670	PRINT 165, I, ITAG(I), X(I), Y(I), Z(I), SI(I), CURI, CMAG, PH	MA 669
671 316	CONTINUE	MA 670
672 308	IF(M.EQ.0)GO TO 310	MA 671
673	PRINT 197	MA 672
674	J=N-2	MA 673
675	ITMP1=LD+1	MA 674
676	DO 309 I=1.M	MA 675
677	J=J+3	MA 676
678	ITMP1=ITMP1-1	MA 677 MA 678
679	EX=CUR(J)	MA 678 MA 679
680	EY=CUR(J+1)	MA 680
681	EZ=CUR(J+2)	MA 681
682	ETH=EX*T1X(ITMP1)+EY*T1Y(ITMP1)+EZ*T1Z(ITMP1)	MA 682
683	EPH=EX*T2X(ITMP1)+EY*T2Y(ITMP1)+EZ*T2Z(ITMP1)	MA 683
684	ETHM=CABS(ETH)	MA 684
685 686	ETHA=CANG(ETH)	MA 685
686 687	EPHM=CABS(EPH)	MA 686
688 309	EPHA=CANG(EPH)	MA 687
689 689	<pre>PRINT 198.I,X(ITMP1),Y(ITMP1),Z(ITMP1),ETHM,ETHA,EPHM,EPHA,EX,EY, 1 EZ</pre>	MA 688
690 310	IF (IXTYP.NE.O.AND.IXTYP.NE.5) GO TO 70	MA 689
691	TMP1=PIN-PNLS-PLOSS	MA 690
692	TMP2=100.+TMP1/PIN	MA 691
693	PRINT 166, PIN, TMP1, PLOSS, PNLS, TMP2	MA 692
694 70	CONTINUE	MA 693
695	IGO=4	MA 694
696	IF(NCOUP.GT.0)CALL COUPLE(CUR,WLAM)	MA 695 Ma 696
697	IF (IFLOW.NE.7) GO TO 71	MA 696 MA 697
698	IF (IXTYP.GT.O.AND.IXTYP.LT.4) GO TO 113	MA 698
699	IF (NFRQ.NE.1) GO TO 120	MA 699
700	PRINT 135	MA 700
701	GO TO 14	MA 701
702 71 703 C	IGO=5	MA 702
700 C		MA 703

						M
	704 705		NEAR FIELD CALCULATION	МА	70	4
	706		IF (NEAR.EQ.(-1)) GO TO 78	MA	70;	5
7	07		CALL NFPAT		70	
7	708		IF (MHZ.EQ.NFRQ) NEAR=-1		70	
	709		IF (NFRQ.NE.1) GO TO 78		708	
	10		PRINT 135		71	
	/11	-	GO TO 14		71	
	/12 /13				712	
	13		STANDARD FAR FIELD CALCULATION	MA	713	5
	15	-	IF(IFAR.EQ1)GO TO 113		714	
	16		PINR=PIN		715	
7	17		PNLR=PNLS		718	
7	18		CALL RDPAT		717	
		113	IF (IXTYP.EQ.0.OR.IXTYP.GE.4) GO TO 119		719	
	20		NTHIC=NTHIC+1		720	
	21		INC=INC+1	MA	721	
	22 23		XPR1=XPR1+XPR4	MA	722	2
	24		IF (NTHIC.LE.NTHI) GO TO 54 NTHIC=1		723	
	25		XPR1=THETIS		724	
	26		XPR2=XPR2+XPR5		725	
7	27		NPHIC=NPHIC+1		726	
	28		IF (NPHIC.LE.NPHI) GO TO 54		728	
	29		NPHIC=1		729	
	30		XPR2=PHISS	MA	730)
	31 32	c	IF (IPTFLG.LT.2) GO TO 119 NORMALIZED RECEIVING PATTERN PRINTED		731	
	33	C	ITMP1=NTHI*NPHI		732	
	34		IF (ITMP1.LE.NORMF) GO TO 114		733 734	
7	35		ITMP1=NORMF		735	
7	36		PRINT 181		736	
		114	TMP1=FNORM(1)	ΜА	737	
	38		DO 115 J=2, ITMP1	MA	738	
	39	115	IF (FNORM(J).GT.TMP1) TMP1=FNORM(J) CONTINUE		739	
	41	115	PRINT 182, TMP1, XPR3, HPOL(IXTYP), XPR6, ISAVE		740	
	42		DO 118 J=1,NPHI		741	
7	43		ITMP2=NTHI*(J-1)		743	
7	44		DO 116 I=1,NTHI		744	
	45		ITMP3=I+ITMP2		745	
	46		IF (ITMP3.GT.ITMP1) GO TO 117	MA	746	
	47		TMP2=FNORM(ITMP3)/TMP1	MA	747	
	48 49		TMP3=DB20(TMP2) PRINT 183. XPR1,XPR2,TMP3.TMP2		748	
	50		XPR1=XPR1+XPR4		749	
	51	116	CONTINUE		751	
7	52	117	XPR1=THETIS		752	
	53		XPR2=XPR2+XPR5		753	
	54	118	CONTINUE	MA	754	
	55		XPR2=PHISS		755	
	56 57	113	IF (MHZ.EQ.NFRQ) IFAR=-1 IF (NFRQ.NE.1) GO TO 120		756	
	57 58		PRINT 135		757	
	59		GO TO 14		759	
	60	120	MHZ=MHZ+1		760	
	61		IF (MHZ.LE.NFRQ) GO TO 42	MA	761	
	62		IF (IPED.EQ.0) GO TO 123		762	
	63		IF(NVQD.LT.1)GO TO 199		763	
	64 65		PRINT 184, IVQD(NVQD), ZPNORM GO TO 204		764	
	65 66	199	PRINT 184, ISANT(NSANT),ZPNORM		765	
		204	ITMP1=NFRQ		767	

	68		IF (ITMP1.LE.(NORMF/4)) GO TO 121	MA	768
	69		ITMP1=NORMF/4	MA	769
7	70		PRINT 185	MA	770
7	71	121	IF (IFRQ.EQ.O) TMP1=FMHZ-(NFRQ-1) •DELFRQ		771
7	72		IF (IFRQ.EQ.1) TMP1=FMHZ/(DELFRQ**(NFRQ-1))		772
7	73		DO 122 I=1, ITMP1		773
7	74		ITMP2=I+4*(I-1)		774
7	75		TMP2=FNORM(ITMP2)/ZPNORM		775
	76		TMP3=FNORM(ITMP2+1)/ZPNORM		
	77		TMP4=FNORM(ITMP2+2)/ZPNORM		776
	78		TMP5=FNORM(ITMP2+3)		777
	79				778
			PRINT 186, TMP1, FNORM(ITMP2), FNORM(ITMP2+1), FNORM(ITMP2+2),		779
	80		1FNORM(ITMP2+3), TMP2, TMP3, TMP4, TMP5	MA	780
	81		IF (IFRQ.EQ.0) TMP1=TMP1+DELFRQ	MA	781
	82		IF (IFRQ.EQ.1) TMP1=TMP1*DELFRQ	MA	782
		122	CONTINUE	MA	783
	84		PRINT 135	MA	784
		123	CONTINUE	MA	785
7	86		NFRQ=1	ΜΑ	786
7	87		MHZ=1	MA	787
7	88		GO TO 14		788
7	89	125	FORMAT (A2,13A6)		789
- 7	90	126	FORMAT (1H1)		790
7	91	127	FORMAT (///,33X,36H************************************		791
7	92		1 31HNUMERICAL ELECTROMAGNETICS CODE,//,33X,		792
	93		2 36H*********************************		793
		128	FORMAT (////,37X,24H COMMENTS//)		
		129	FORMAT $(7777, 577, 240)$ COMMENTS $= 2 - (777)$		794
		130			795
			FORMAT (///,10X,34HINCORRECT LABEL FOR A COMMENT CARD)		796
		135	FORMAT (////)		797
		136	FORMAT (A2, I3, 3I5, 6E10.3)		798
		137	FORMAT (1X, 19H***** DATA CARD NO., I3, 3X, A2, 1X, I3, 3(1X, I5),	MA	799
	00		1 6(1X,E12.5))	MA	800
		138	FORMAT (///,10X,45HFAULTY DATA CARD LABEL AFTER GEOMETRY SECTION)	MA	801
		139	FORMAT (///,10X,48HNUMBER OF LOADING CARDS EXCEEDS STORAGE ALLOTTE	MA	802
	03		1D)		803
		140	FORMAT (///,10X,31HDATA FAULT ON LOADING CARD NO.=,15,5X,11HITAG S	MA	804
	05		<pre>itep1=.i5,29H IS GREATER THAN ITAG STEP2=,15)</pre>		805
		141	FORMAT (///,10X,51HNUMBER OF EXCITATION CARDS EXCEEDS STORAGE ALLO	MA	806
	07		1TTED)		807
8	08	142	FORMAT (///,10X,48HNUMBER OF NETWORK CARDS EXCEEDS STORAGE ALLOTTE	ΜА	808
8	09		1D)	MA	809
8	10	143	FORMAT(///,10X,79HWHEN MULTIPLE FREQUENCIES ARE REQUESTED, ONLY ON	MA	810
- 8	11		1E NEAR FIELD CARD CAN BE USED -,/,10X,22HLAST CARD READ IS USED)		811
8	12	145	FORMAT (///, 33X, 33H FREQUENCY,//, 36X, 10HFR		
8	13		1EQUENCY=,E11.4.4H MHZ,/,36X,11HWAVELENGTH=,E11.4,7H METERS)		813
		146	FORMAT $(///.30X, 40H STRUCTURE IMPEDANCE LOADING)$		814
		147	FORMAT (/ ,35X,28HTHIS STRUCTURE IS NOT LOADED)		815
		148	FORMAT (///,34X,31H ANTENNA ENVIRONMENT,/)		816
		149	FORMAT (40X,21HMEDIUM UNDER SCREEN -)		817
		150	FORMAT (40X.27HRELATIVE DIELECTRIC CONST.=, F7.3,/,40X,13HCONDUCTIV		818
	19	100	1ITY=,E10.3.11H MHOS/METER,/.40X.28HCOMPLEX DIELECTRIC CONSTANT=,		
	20		12E12.5)		819
		151	,		820
		151	FORMAT (42X,14HPERFECT GROUND) FORMAT (44X,10HFREE SPACE)		821
		152			822
		153	FORMAT (///,32X,25H ~ MATRIX TIMING - ~ -,//,24X,5HFILL=,F9.3,		823
	24	15.	115H SEC., FACTOR=,F9.3,5H SEC.)		824
		154	FORMAT (///,40X,22H EXCITATION)		825
		155	FORMAT (/,4X,10HPLANE WAVE,4X,6HTHETA=,F7.2,11H DEG, PHI=,F7.2,		826
	27		1 11H DEG, ETA=, F7.2, 13H DEG, TYPE -, A6, 15H= AXIAL RATIO=, F6.3)		827
		156	FORMAT (/,31X,17HPOSITION (METERS).14X,18HORIENTATION (DEG)=/.28X,		828
	25		11HX, 12X, 1HY, 12X, 1HZ, 10X, 5HALPHA, 5X, 4HBETA, 4X, 13HDIPOLE MOMENT, //		829
	30		2 .4X, 14HCURRENT SOURCE, 1X, 3(3X, F10.5), 1X, 2(3X, F7.2), 4X, F8.3)		830
8	э I	157	FORMAT (4X,4(I5,1X),6(3X,E11.4),3X,A6,A2)	MA	831

MAIN

```
832 158
          FORMAT (///.44X.24H- - - NETWORK DATA - - -)
                                                                               MA 832
833 159
          FORMAT (/,6X,18H- FROM - - TO -.11X,17HTRANSMISSION LINE,15X,36 MA 833
834
         1H- -
                 SHUNT ADMITTANCES (MHOS) - -,14X,4HLINE,/,6X,21HTAG SEG. MA 834
835
         2
             TAG SEG., 6X, 9HIMPEDANCE, 6X, 6HLENGTH, 12X, 11H- END ONE -, 17X, 11H MA 835
378
         3- END TWO - 12X,4HTYPE,/
                                      .6X.21HNO. NO. NO. NO., 9X,4HOHMS MA 836
837
         4,8X,6HMETERS,9X, 4HREAL,10X,5HIMAG.,9X,4HREAL,10X,5HIMAG.)
                                                                               MA 837
838 160
          FORMAT (/.6X.8H- FROM -.4X.6H- TO -.26X.45H- - ADMITTANCE MATRIX MA 838
         1 ELEMENTS (MHOS) - -,/ .6X,21HTAG SEG.
839
                                                          TAG SEG., 13X, 9H(ON MA 839
840
                        9H(ONE, TWO), 19X, 9H(TWO, TWO), / ,6X, 21HNO. NO.
         2E.ONE).19X.
                                                                            NO MA 840
841
              NO.,8X,4HREAL,10X,5HIMAG.,9X,4HREAL,10X,5HIMAG.,9X,4HREAL,
         3
                                                                               MA 841
842
         4 10X 5HTMAG )
                                                                               MA 842
843 161
          FORMAT (///,29X,33H- ~ - CURRENTS AND LOCATION - - -,//,33X,24HDIS MA 843
844
         ITANCES IN WAVELENGTHS)
                                                                               MA 844
          FORMAT ( //.2X.4HSEG..2X.3HTAG.4X.21HCOORD. OF SEG. CENTER.5X.
845 162
                                                                               MA 845
846
         1 4HSEG., 12X, 26H- - - CURRENT (AMPS) - - -,/,2X, 3HNO., 3X, 3HNO.,
                                                                               MA 846
847
         2 5X.1HX.8X.1HY.8X.1HZ.6X.6HLENGTH.5X.4HREAL.8X.5HIMAG.,7X.4HMAG.,
                                                                               MA 847
848
         3 8X, 5HPHASE)
                                                                               MA 848
849 163
          FORMAT (///,33X.40H- - - RECEIVING PATTERN PARAMETERS - - -,/ ,43 MA 849
850
         1X,4HETA=,F7.2,8H DEGREES,/,43X.6HTYPE -,A6,/,43X,12HAXIAL RATIO=,
                                                                               MA 850
         2 F6.3,// ,11X,5HTHETA,6X,3HPHI,10X,13H- CURRENT -,9X,3HSEG,/
851
                                                                               MA 851
852
         3.11X.5H(DEG), 5X, 5H(DEG), 7X, 9HMAGNITUDE, 4X, 5HPHASE, 6X, 3HNO., /)
                                                                               MA 852
853 164
          FORMAT (10X,2(F7.2,3X),1X,E11.4,3X,F7.2,4X,I5)
                                                                               MA 853
854 165
          FORMAT (1X,215,3F9.4,F9.5,1X,3E12.4,F9.3)
                                                                               MA 854
855 166
          FORMAT (///,40X,24H- - - POWER BUDGET - - -.//
                                                              ,43X,15HINPUT PO MA 855
856
         1WFR
               =,E11.4,6H WATTS,/ ,43X,15HRADIATED POWER=,E11.4,6H WATTS./
                                                                               MA 856
         2 .43X.15HSTRUCTURE LOSS=,E11.4.6H WATTS,/ .43X.15HNETWORK LOSS =, MA 857
857
858
         3 E11.4,6H WATTS,/,43X,15HEFFICIENCY
                                                  =, F7.2,8H PERCENT)
                                                                               MA 858
859 170
          FORMAT (40X,25HRADIAL WIRE GROUND SCREEN,/,40X, 15,6H WIRES,/,40 MA 859
860
         1X.12HWIRE LENGTH=,F8.2.7H METERS,/,40X.12HWIRE RADIUS=,E10.3,7H ME MA 860
861
         2TERS)
                                                                               MA 861
862 181
          FORMAT (///.4X,51HRECEIVING PATTERN STORAGE TOO SMALL,ARRAY TRUNCA MA 862
863
         1TED
                                                                               MA 863
864 182
          FORMAT (///.32X.40H- - - NORMALIZED RECEIVING PATTERN - - -./.41X. MA 864
         1 21HNORMALIZATION FACTOR=, E11.4./.41X, 4HETA=, F7.2.8H DEGREES, /,41X MA 865
865
866
         2,6HTYPE -,A6,/,41X,12HAXIAL RATIO=,F6.3,/,41X,12HSEGMENT NO.=,I5,/ MA 866
         3/,21X,5HTHETA,6X,3HPHI,9X,13H- PATTERN -,/,21X,5H(DEG),5X,5H(DEG MA 867
867
868
         4),8X,2HDB,8X,9HMAGNITUDE,/)
                                                                               MA 868
869 183
          FORMAT (20X,2(F7.2,3X),1X,F7.2,4X,E11.4)
                                                                               MA 869
870 184
          FORMAT (///,36X,32H- - - INPUT IMPEDANCE DATA - - -,/ ,45X,18HSO MA 870
871
         1URCE SEGMENT NO., I4, / ,45X,21HNORMALIZATION FACTOR=, E12.5, //
                                                                               MA 871
         2,7X,5HFREQ.,13X,34H- - UNNORMALIZED IMPEDANCE - -,21X,
872
                                                                        32H-
                                                                               MA 872
873
         3 - NORMALIZED IMPEDANCE - -./
                                             .19X,10HRESISTANCE.4X.9HREACTA MA 873
874
         4NCE.6X.9HMAGNITUDE.4X,5HPHASE.7X.10HRESISTANCE.4X,9HREACTANCE.6X. MA 874
875
         5 9HMAGNITUDE, 4X, 5HPHASE, / ..., 8X, 3HMHZ, 11X, 4HOHMS, 10X, 4HOHMS, 11X,
                                                                               MA 875
876
         6 4HOHMS, 5X, 7HDEGREES, 47X, 7HDEGREES, /)
                                                                               MA 876
877 185
         FORMAT (///.4X.62HSTORAGE FOR IMPEDANCE NORMALIZATION TOO SMALL, A MA 877
878
         IRRAY TRUNCATED)
                                                                               MA 878
879 186
         FORMAT (3X, F9.3, 2X, 2(2X, E12.5), 3X, E12.5, 2X, F7.2, 2X, 2(2X, E12.5), 3X, MA 879
880
         1 \in \{12.5, 2X, F7.2\}
                                                                               MA 880
881 196
          FORMAT( ////,20X,55HAPPROXIMATE INTEGRATION EMPLOYED FOR SEGMENT MA 881
882
         1S MORE THAN, F8.3, 18H WAVELENGTHS APART)
                                                                               MA 882
          FORMAT( ////,41X,38H- - - - SURFACE PATCH CURRENTS - - - -,//,
883 197
                                                                               MA 883
884
         1 50X,23HDISTANCE IN WAVELENGTHS,/,50X,21HCURRENT IN AMPS/METER.
                                                                               MA 884
885
         1 //,28X,26H- - SURFACE COMPONENTS - -,19X,34H- - - RECTANGULAR COM MA 885
886
         1PONENTS - - -,/.6X,12HPATCH CENTER,6X,16HTANGENT VECTOR 1,3X,
                                                                               MA 886
                                                                               MA 887
887
         116HTANGENT VECTOR 2,11X.1HX.19X.1HY.19X.1HZ./.5X.1HX.6X.1HY.6X.
888
         11HZ, 5X, 4HMAG., 7X, 5HPHASE, 3X, 4HMAG., 7X, 5HPHASE, 3(4X, 4HREAL, 6X,
                                                                               MA 888
                                                                               MA 889
         1 6HIMAG. ))
889
          FORMAT(1X, I4, /, 1X, 3F7.3, 2(E11.4, F8.2), 6E10.2)
                                                                               MA 890
890 198
                                                                               MA 891
          FORMAT(/, 11H RUN TIME =, F10.3)
891 201
          FORMAT(///,34X,28H- - - CHARGE DENSITIES - - -,//,36X,
                                                                               MA 892
892 315
                                                                               MA 893
893
         1 24HDISTANCES IN WAVELENGTHS,///,2X,4HSEG.,2X,3HTAG,4X,
         2 21HCOORD. OF SEG. CENTER, 5X, 4HSEG., 10X,
                                                                               MA 894
894
         3-31HCHARGE DENSITY (COULOMBS/METER),/,2X,3HNO.,3X,3HNO.,5X,1HX,8X, MA 895
895
```

896		4 1HY, 8X, 1HZ, 6X, 6HLENGTH, 5X, 4HREAL, 8X, 5HIMAG., 7X, 4HMAG., 8X, 5HPHASE)	ма	896
897	321	FORMAT(/,20X,42HTHE EXTENDED THIN WIRE KERNEL WILL BE USED)	MA	897
898	303	FORMAT(/,9H ERROR - ,A2,32H CARD IS NOT ALLOWED WITH N.G.F.)	ΜА	898
899	327	FORMAT(/,35X,31H LOADING ONLY IN N.G.F. SECTION)	ΜΑ	89 9
900	302	FORMAT(48H ERROR - N.G.F. IN USE. CANNOT WRITE NEW N.G.F.)	MA	900
901	313	FORMAT(/,62H NUMBER OF SEGMENTS IN COUPLING CALCULATION (CP) EXCEE	МА	901
902		IDS LIMIT)	MA	902
903	390	FORMAT(78H RADIAL WIRE G. S. APPROXIMATION MAY NOT BE USED WITH SO	МА	903
904		1MMERFELD GROUND OPTION)	ΜА	904
905	391	FORMAT(40X,52HFINITE GROUND. REFLECTION COEFFICIENT APPROXIMATION	МА	905
906		1)	МА	906
907	392	FORMAT(40X,35HFINITE GROUND. SOMMERFELD SOLUTION)	МА	907
908	393	FORMAT(/,29H ERROR IN GROUND PARAMETERS -,/,41H COMPLEX DIELECTRIC	MA	908
909				909
910		END	MA	910-

.

PURPOSE

To fill COMMON/DATA/ with segment coordinates for a circular arc of segments.

METHOD

The formal parameters specify the number of segments, radius of the arc, starting angle, final angle and wire radius. Segment coordinates are computed for the arc in the x, z plane with a left hand rotation about the y axis.

SYMBOL DICTIONARY

ANG	= angle of point on the arc (radians, zero on x axis)
ANG1	= angle at first end
ANG2	= angle at second end
DANG	= angle covered by each segment
IST	= number of initial segment
ITG	= tag number assigned to each segment
NS	= number of segments
RAD	= wire radius
RAD R ADA	= wire radius = arc radius
RADA	= arc radius
R ADA Т A	= arc radius = $\pi/180$
R ADA T A X S L	<pre>= arc radius = π/180 = x coordinate of first end of segment</pre>

CONSTANTS

.01745329252	$= \pi/180$	
360.00001	= test for angle greate	er than 360 degrees

1			AR	1
2			AR	2
	Ċ	and the second	AR	3
4	С		AR	4
5		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	AR	5
6		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(AR	6
7			AR	7
8			AR	8
9			AR	9
10		DATA TA/.01745329252/	AR	10
11		IST=N+1	AR	11
12		N=N+NS	AR	12
13			AR	13
14		MP=M	AR	14
15		IPSYM=0	AR	15
16		IF (NS.LT.1) RETURN	AR	16
† 7		IF (ABS(ANG2-ANG1).LT.360.00001) GO TO 1	AR	17
18		PRINT 3	AR	18
19		STOP	AR	19
20	1		AR	20
21		DANG=(ANG2-ANG1)*TA/NS	AR	21
22			AR	22
23			AR	23
24			AR	24
25			AR	25
26			AR	26
27			AR	27
28			AR	28
29			AR	29
30			AR	30
31			AR	31
32			AR	32
33			AR	33
34			AR	34
35			AR	35
36			AR	36
37	2		AR	37
38			AR	38
39	C		AR	39
40			AR	40
41	-		AR	41-
•••			~~	

.

ATGN2

PURPOSE

To return zero when both arguments of a two-argument arctangent function are zero. (Most standard arctangent functions give an error return when both arguments are zero.)

METHOD

System function ATAN2 is used except when both arguments are zero, in which case the value zero is returned. The value returned is the angle (in radians) whose sine is X and cosine is Y.

SYMBOL DICTIONARY

X = first argument

Y = second argument

CODE LISTING

1		FUNCTION ATGN2 (X,Y)	AT	1
2	С		AT	2
3	С	ATGN2 IS ARCTANGENT FUNCTION MODIFIED TO RETURN 0. WHEN X=Y=0.	AT	3
4	С		AT	4
5		IF (X) 3,1,3	AT	5
6	1	IF (Y) 3,2,3	AT	6
7	2	ATGN2=0.	AT	7
8		RETURN	AT	8
9	3	ATGN2=ATAN2(X,Y)	AT	9
10		RETURN	AT	10
11		END	AT	11-

BLCKOT

PURPOSE

To control the writing and reading of matrix blocks on files for the outof-core matrix solution. The routine also checks for the end-of-file condition during reading.

METHOD

The routine uses a binary read and write with implied DO loops for reading and writing variable length strings into and out of various core locations. The end-of-file condition is checked by a call to function ENF. If an unexpected end of file is detected (governed by NEOF) the program stops.

CODING

BL9 - BL12 Write a record on file NUNIT.
BL14 - BL20 Read NBLKS records from NUNIT, and check for end of file.
BL21 - BL24 Code if end of file detected.

SYMBOL DICTIONARY

AR = matrix array ENF = external function (checks end-of-file condition) I = D0 loop index I1 = implied D0 loop limits, inclusive matrix locations written from or read into J = implied D0 index NBLKS = number of records to be read NEOF = EOF check flag, also used to trace the call to BLCKOT NUNIT = file number

CONSTANT

777 = NEOF when EOF is expected by calling program

1		SUBROUTINE BLCKOT (AR,NUNIT,IX1,IX2,NBLKS,NEOF)	8L	1
2	С		BL	2
3	С	BLCKOT CONTROLS THE READING AND WRITING OF MATRIX BLOCKS ON FILES	ΒĻ	3
	С	FOR THE OUT-OF-CORE MATRIX SOLUTION.	BL	4
5	С		8L	5
6		LOGICAL ENF	ΒL	6
7		COMPLEX AR	8L	7
8		DIMENSION AR(1)	ΒL	8
9		I1=(IX1+1)/2	BL	9
10		I2=(IX2+1)/2	BL	10
11	1	WRITE (NUNIT) (AR(J), J=I1, I2)	BL	11
12		RETURN	ÐL	12
13		ENTRY BLCKIN	BL	13
14		I1 = (IX1 + 1)/2	BL	14
15		I2=(IX2+1)/2	BL	15
16		DO 2 I=1,NBLKS	BL	16
17		READ (NUNIT) (AR(J), J=I1,I2)	BL	17
18		IF (ENF(NUNIT)) GO TO 3	BL	18
19	2	CONTINUE	BL	19
20		RETURN	81	20
21	3	PRINT 4, NUNIT, NBLKS, NEOF	BL	21
22		IF (NEOF.NE.777) STOP	BL	22
23		NEOF=0	BL	23
24		RETURN	BL	24
25	С		BL	25
26	4	FORMAT (13H EOF ON UNIT, I3, 9H NBLKS= , I3, 8H NEOF= , I5)	8L	25
27		END	BL	20 27-
			οL	<u> </u>

CA BC

PURPOSE

To compute the coefficients in the current function on each segment, given the basis function amplitudes. Surface current components are also computed.

METHOD

The total current on segment i is

$$I_{i}(s) = A_{i} + B_{i} \sin [k(s - s_{i})] + C_{i} \cos [k(s - s_{i})],$$

where s is distance along the wire, and $s = s_i$ at the center of segment i. The coefficients A_i , B_i , and C_i are the sums of the corresponding coefficients in the portion of each basis function that extends onto segment i.

CODING

CB35 Call to TBF computes components of basis function I.

- CB36 CB43 The basis function components are multiplied by the basis function amplitude from array CURX and summed for each segment.
- CB45 CB63 For a current slope discontinuity source, the special basis function with discontinuous slope, from which the exciting electric field was computed, is recomputed and added to the current coefficients. The call to TBF, with the second argument zero and ICON1(I) temporarily zero, computes a basis function going to zero with non-zero derivative at end one of segment I.
- CB64 CB65 Total current at the center of each segment is computed and stored in place of the basis function amplitudes.
- CB68 CB79 The \hat{t}_1 and \hat{t}_2 components of surface current for each patch are expanded to x, y, and z components.

SYMBOL DICTIONARY

AR, AI = real and imaginary parts of the basis function amplitude CCJ = -j/60CCX = \hat{t}_1 and \hat{t}_2 components of surface current on a patch CS2 = \hat{t}_1 and \hat{t}_2 components of surface current on a patch

CURD	= amplitude of the special basis function for a current slope
	discontinuity source
CURX	= input array of basis function amplitudes that are replaced by
	values of current at segment centers
J	= number of a segment onto which a basis function extends
JC01	= array locations of the \hat{t}_1 and \hat{t}_2 surface current components
JC02	for a patch
JX	= DO loop index; temporary storage of connection number
к	= array location for patch geometry data
SH	= (half segment length)/ λ
ΤP	$= 2\pi$

CABC

	1	SUBROUTINE CABC (CURX)	СВ	4
	2 C		СВ	1 2
	3 C	CABC COMPUTES COEFFICIENTS OF THE CONSTANT (A), SINE (B), AND	CB	3
	4 C	COSINE (C) LERMS IN THE CURRENT INTERPOLATION FUNCTIONS FOR THE	CB	4
	5 C	CURRENT VECTOR CUR.	СВ	5
	5 C		CB	6
7		COMPLEX CUR, CURX, VQDS, CURD, CCJ, VSANT, VQD, CS1, CS2	-	7
8		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M MP X(300) X(300) 7(300) CT(300)		8
9		-17,01(300),ACF(300),BCF(300),1CON1(300),TCON2(300),TTAC(300),TCONV(300),TTAC(300),TCONV(300),TCO		9
10		2000////2/01/	~~	10
11		COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300	CB	11
12		17,000(300)		12
13		COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	CP.	13
14			~ ~	14
15		COMMON /VSORC/ VQD(30),VSANT(30),VQDS(30),IVQD(30),ISANT(30),IQDS(CB	15
16		(SO), NYQU, NSANI, NQUS	СB	16
17		COMMON /ANGL/ SALP(300)	CB	17
18		DIMENSION $T1X(1)$, $T1Y(1)$, $T1Z(1)$, $T2X(1)$, $T2Y(1)$, $T2Z(1)$	СВ	18
19		DIMENSION CURX(1), CCJX(2)	00	19
20		EQUIVALENCE (TTX,SI), (TTY,ALP), (TTZ,BET), (T2X,ICON1), (T2Y,ICON	CB	20
21		12), (122,11AG)	СB	21
22		EQUIVALENCE (CCJ,CCJX)	CB	22
23		DATA TP/6.283185308/,CCJX/0.,-0.0166666666667/	СВ	23
24		IF (N.EQ.0) GO TO 6	ĊВ	24
25		DO 1 I=1,N	СВ	25
26		AIR(I)=0.	CB	26
27		AII(I)=0.	CB	27
28		BIR(I)=0.	CB	28
29		9II(I)=0 .	СВ	29
30		CIR(I)=0.	СВ	30
	1	CII(I)=0.	СВ	31
32		DO 2 I=1.N	СВ	32
33		AR=REAL(CURX(I))	СВ	33
34		AI=AIMAG(CURX(I))	СВ	34
35		CALL TBF (I,1)	СВ	35
36		DO 2 JX=1, JSNO	СВ	36
37		J=JCO(JX)	СВ	37
38		$AIR(J) = AIR(J) + AX(JX) \cdot AR$	СВ	38
39		$AII(J) = AII(J) + AX(JX) \cdot AI$	СВ	39
40		$BIR(J)=BIR(J)+BX(JX) \bullet AR$	СВ	40
41		$BII(J)=BII(J)+BX(JX) \bullet AI$	СВ	41
42		$CIR(J) = CIR(J) + CX(JX) \cdot AR$	СВ	42
43 44		CII(J)=CII(J)+CX(JX)*AI	СВ	43
45		IF (NQDS.EQ.0) GO TO 4	СВ	44
46			CB	45
47			CB .	46
48			СВ	47
49			CB	48
50			ĊВ	49
51			СВ	50
52		CUPD = CC + eVODC (TC) / (A + OC(C) + CC + (CT(T))) / (A + (CB	51
53			CB	52
54			CB	53
55			CB	54
56			CB	55
57			CB	56 57
58			CB	57 58
59			CB CB	58
60			CB	59 60
61			CB	60 61
62			CB	62
63	3		CB CB	63
64	4		CB	64
		•	-	-

CABC

65	5	CURX(I)=CMPLX(AIR(I)+CIR(I),AII(I)+CII(I))	СВ	65
66	6	IF (M.EQ.O) RETURN	СВ	66
67	Ç	CONVERT SURFACE CURRENTS FROM T1, T2 COMPONENTS TO X, Y, Z COMPONENTS	СВ	67
68		K=LD-M	СВ	68
69		JC01=N+2*M+1	CВ	69
70		JCO2=JCO1+M	CB	70
71		DO 7 I=1,M	ĊВ	71
72		K=K+1	СВ	72
73		JC01=JC01-2	С8	73
74		JC02=JC02-3	СÐ	74
75		CS1=CURX(JCO1)	СВ	75
76		CS2=CURX(JC01+1)	СВ	76
77		CURX(JCO2)=CS1*T1X(K)+CS2*T2X(K)	CB	77
78		CURX(JCO2+1)=CS1*T1Y(K)+CS2*T2Y(K)	CB	78
79	7	CURX(JC02+2)=CS1*T1Z(K)+CS2*T2Z(K)	СВ	79
80		RETURN	СВ	80
81		END	СВ	81-

CANG

PURPOSE

To calculate the phase angle of a complex number in degrees.

METHOD

z = x + jy $\phi = [\arctan(y/x)] 57.29577951$

SYMBOL DICTIONARY

AIMAG = external routine (imaginary part of complex number)
ATGN2 = external routine (arctan for all quadrants)
CANG = φ
REAL = external routine (real part of a complex number)
Z = input complex quantity

CONSTANT

57.29577951 conversion from radians to degrees

CODE LISTING

1	FUNCTION CANG (Z)	CA	1
2 C		CA	2
3 C	CANG RETURNS THE PHASE ANGLE OF A COMPLEX NUMBER IN DEGREES.	CA	3
4 C		CA	4
5	COMPLEX Z	CA	5
6	CANG=ATGN2(AIMAG(Z),REAL(Z))*57.29577951	CA	6
7	RETURN	CA	7
8	END	CA	8-

PURPOSE

To compute and store the matrices B, C and D for the NGF solution.

METHOD

The structure of matrices B, C and D is described in Section VI. The coding to fill these matrices is involved due to their complex structure, as shown in Figure 12 of Section VI. The complexity is increased by the need to divide the matrices into blocks of rows when they are stored on files (see Section VII).

Much of the coding in CMNGF has to do with connections between new and NGF segments and patches. When a new segment or patch connects to a NGF segment the basis function associated with the NGF segment is modified due to the new junction condition. The amplitude of the modified basis function is a new unknown associated with the B' and D' sections of the matrix. The modified basis function may extend onto other NGF segments that may or may not connect directly to new segments. Also, the basis function of the new segment extends onto the NGF segment to which it connects. Hence fields must be computed for the currents on some NGF segments as well as all new segments.

Comments in the code should be of some help in understanding the procedure. The notation D(WS) in the comments corresponds to D in Sw Figure 12. Some parts of the code are explained below.

CG61 - CG70 TRIO computes the components of all basis functions on segment J, where J is a new segment, and stores the coefficients in COMMON/SEGJ/. The array JCO contains the basis-function numbers which ordinarily are the matrix columns associated with the basis functions. If the basis function is for a new segment then JCO is set at CG66 to the column relative to the beginning of the matrix B. If the basis function is for a NGF segment modified by the connection, then JCO is set at CG68 to the column in B'_{WW} relative to the beginning of B. Thus the calls to CMWW and CMWS may store contributions in B'_{WW} and B'_{WW} as well as B'_{WW} and B'_{WW} a

-39-

CMNGF

- CG90 CG108 In this section the fields are evaluated for NGF segments that connect to new segments or patches. TRIO finds all basis functions that contribute to the current on the segment. For a component of a new basis function IR is set to the column in B_{WW} at CG95. For a component of a modified basis function IR is set to the column in B_{WW}' , relative to the start of B, at CG99. If the basis function component is for a NGF basis function that has not been modified the test at CG98 skips to the end of the loop. The arrays in COMMON/SEGJ/ are adjusted from CG101 to CG104 so that CMWW and CMWS will store the matrix element contributions in the correct locations.
- CG109 CG119 If a NGF segment connects to a new segment on one end and to a NGF patch on the opposite end the modified basis function extends onto the patch as a singular component of the patch current. The field due to this component on the patch is added to the matrix element of the modified basis function at CG119.
- CG122-CG136 This is similar to CG90 to CG108, but evaluates fields of NGF segments that get contributions from modified basis functions, but do not connect directly to new segments. TBF is called, rather than TRIO to compute modified basis function J on all segments on which it exists. New segments and NGF segments for which contributions have already been evaluated are skipped at CG133 and CG134.
- CG165 CG263 Filling C and D is similar to that for B but fields must be evaluated for all NGF segments and patches as well as new segments and patches.

SYMBOL DICTIONARY

CB	= array for matrix B
CC	= array for matrix C
CD	= array for matrix D
IEXKX	= flag to select extended thin-wire kernel
MIEQ	= number of patch equations in NGF
MEQ	= total number of patch equations

NB	= row dimension of CB. CB will contain only one block of B when
	ICASX = 3 or 4
NC	= row dimension of CC (C transposed)
ND	= row dimension of CD (D transposed)
NEQN	= starting column of D , relative to start of C
NEQP	= starting column of zeros after D_{ww} , relative to start of D
NEQS	= starting column of D ww, relative to start of D
NEQS P	= starting column of D _{ww} , relative to start of C
RKHX	= minimum range for using the lumped current approximation for
	the field of a segment

1	SUBROUTINE CMNGF (CB,CC,CD,NB,NC,ND,RKHX,IEXKX)	CG	1
2 C	CMNGF FILLS INTERACTION MATRICIES B, C, AND D FOR N.G.F. SOLUTION	CG	
3	COMPLEX CB, CC, CD, ZARRAY, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC		2
4	COMMON /DATA/ LD N1 N2 N NR N1 V2 N NR V1 V2 N V7 CON V(TACA)	CG	3
5	COMMON /DATA/ LD, N1, N2, N, NP, M1, M2, M, MP, X(300), Y(300), Z(300), SI(300)	CG	4
	1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(CG	5
6	2300), WLAM, IPSYM	CG	6
7	COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF	CG	7
8	COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	ĊĞ	8
9	1CON(10),NPCON		
10	COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ	CG	9
11	S EVE FXC FXC FXC BULL FX HIS CADE SADE SALPJ, EXK, EYK, EXK, EXS, EYS, EZ	CG	10
	1S, EXC, EYC, EZC, RKH, TEXK, IND1, IND2, IPGND	CG	11
12	COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	CG	12
13	ICASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	ĊĠ	13
14	DIMENSION CB(NB,1), CC(NC,1), CD(ND,1)	ĊĞ	
15	RKH=RKHX		14
16	IEXK≑IEXKX	CG	15
17	M1EQ=2*M1	ĊG	16
18		CG	17
	M2EQ=M1EQ+1	CG	18
19	MEQ=2*M	CG	19
20	NEQP=ND-NPCON+2	CG	20
21	NEQS=NEQP-NSCON		
22	NEQSP=NEQS+NC	ĊG	21
23	NEQN=NC+N-N1	CG	22
24	ITX=1	CG	23
		CG	24
25	IF (NSCON.GT.O) ITX=2	CG	25
26	IF (ICASX.EQ.1) GO TO 1	CG	26
27	REWIND 12	ĊĞ	27
28	REWIND 14		
29	REWIND 15	CG	28
30	IF (ICASX.GT.2) GO TO 5	CG	29
31 1		CG	30
	DO 4 J=1,ND	CG	31
32	DO 2 I=1.ND	CG	32
33 2	CD(I,J)=(00.)	ĊĞ	33
34	DO 3 I=1,NB		
35	CB(I, J) = (0.0.)	CG	34
36 3	CC(I,J)=(0.,0.)	CG	35
37 4		CG	36
	CONTINUE	CG	37
38 5	IST=N-N1+1	CG	38
39	IT=NPBX	CG	39
40	ISV=-NPBX		
41 C	LOOP THRU 24 FILLS B. FOR ICASX=1 OR 2 ALSO FILLS D(WW), D(WS)	CG	40
42	DO 24 IBLK=1,NBBX	CG	41
43		CG	42
	ISV=ISV+NPBX	CG	43
44	IF (IBLK.EQ.NBBX) IT=NLBX	CG	44
45	IF (ICASX.LT.3) GO TO 7	CG	45
46	DO 6 J=1.ND	CG	46
47			
48 6		CG	47
49 7		CG	48
50	T2=TSV+TT	CG	49
		CG	50
51	IN2=I2	CG	51
52	IF (IN2.GT.N1) IN2≂N1	CG	52
53		CG	53
54	TM2-T2-N1		
55	TE (TM1 T 1) TM1-1	CG	54
56	TMX = 1	CG	55
57		CG	56
	IF (I1.LE.N1) $IMX = N1 - I1 + 2$	CG	57
58	IF (N2.GT.N) GO TO 12	CG	58
59 C	FILL B(WW), B(WS). FOR ICASX=1,2 FILL D(WW), D(WS)	CG	59
60	DO 11 J=N2,N	CG	60
. 61	CALL TRID (I)		
62		CG	61
63	JSS=JCO(T)	00	62
64	TE (ISS IT N2) CO TO B	CG	63
		CG	64

65 C			C
65 L	SET JCO WHEN SOURCE IS NEW BASIS FUNCTION ON NEW SEGMENT	CG	65
67	JCO(I)=JSS-N1 GO TO 9	CG	66
68 C		CG	67
69 8	SOURCE IS PORTION OF MODIFIED BASIS FUNCTION ON NEW SEGMENT JCO(I)=NEQS+ICONX(JSS)	ĊĞ	68
70 9	CONTINUE	CG	69
71		ĊĠ	70
72	IF (I1.LE.IN2) CALL CMWW (J,I1.IN2.CB.NB.CB.NB.O) IF (IM1 LF IM2) CALL CMWS (J IM1 IN2.CB.NB.CB.NB.O)	CG	71
73	IF (IM1.LE.IM2) CALL CMWS (J,IM1.IM2.CB(IMX,1).NB.CB.NB.O) IF (ICASX.GT.2) GO TO 11	CG	72
74	CALL CMWW (J,N2,N,CD,ND,CD,ND,1)	CG	73
75	IF (M2.LE.M) CALL CMWS (J,M2EQ,MEQ,CD(1,IST),ND,CD,ND,1)	CG	74
76 C	LOADING IN D(WW)	CG	75
77	IF (NLOAD.EQ.0) GO TO 11	CG	76
78	IR=J-N1	CG	77
79	EXK=ZARRAY(J)	CG	78
80	D0 10 I=1, JSNO	CG	79
81	JSS=JCO(I)	CG	80
82 10	CD(JSS,IR)=CD(JSS,IR)-(AX(I)+CX(I))*EXK	CG CG	81 82
83 11	CONTINUE	CG	83
84 12	IF (NSCON.EQ.0) GO TO 20	CG	84
85 C	FILL B(WW)PRIME	CG	85
86	DO 19 I=1,NSCON	CG	86
87	J=ISCON(I)	CG	87
88 C 89 C	SOURCES ARE NEW OR MODIFIED BASIS FUNCTIONS ON OLD SEGMENTS WHICH	CG	88
90	CONNECT TO NEW SEGMENTS	CG	89
91	CALL TRIO (J) JSS=0	CG	90
92	DO 15 IX=1,JSNO	CG	91
93	IR=JCO(IX)	CG	92
94	IF (IR.LT.N2) GO TO 13	CG	93
95	IR=IR-N1	CG	94
96	GO TO 14	CG	95
97 13	IR=ICONX(IR)	CG CG	96
98	IF (IR.EQ.0) GO TO 15	CG	97 98
99	IR=NEQS+IR	CG	99
100 14	JSS=JSS+1	CG	
101	JCO(JSS)=IR	ĊĠ	
102	AX(JSS)=AX(IX)	čĞ	
103	BX(JSS)≃BX(IX)	CG	
104	CX(JSS)=CX(IX)	CG	
105 15	CONTINUE	CG	105
106 107		CG	
108	IF (I1.LE.IN2) CALL CMWW (J,I1,IN2,CB,NB,CB,NB,O)	CG	107
109 C	IF (IM1.LE.IM2) CALL CMWS (J,IM1,IM2,CB(IMX,1),NB,CB,NB,O) SOURCE IS SINGULAR COMPONENT OF PATCH CURRENT THAT IS PART OF	CG	108
110 C	MODIFIED BASIS FUNCTION FOR OLD SEGMENT THAT CONNECTS TO A NEW	CG	
111 C	SEGMENT ON END OPPOSITE PATCH.	CG	
112	IF (I1.LE.IN2) CALL CMSW (J,I,I1,IN2,CB,CB,O,NB,-1)	CG	
113	IF (NLODF.EQ.0) GO TO 17	CG	
114	VZI-LEX	CG CG	
115	IF (JX.LT.1.OR.JX.GT.IT) GO TO 17	CG	
116	EXK=ZARRAY(J)	CG	
117	DO 16 IX=1, JSNO	CG	
118	JSS=JCO(IX)	CC	
119 16	CB(JX,JSS)=CB(JX,JSS)-(AX(IX)+CX(IX))*EXK	CG	149
120 C	SOURCES ARE PORTIONS OF MODIFIED BASIS FUNCTION J ON OLD SEGMENTS	CG	120
121 C	EXCLUDING OLD SEGMENTS THAT DIRECTLY CONNECT TO NEW SEGMENTS.	CG	121
122 17	CALL TBF (J.1)	CG	
123 124	JSX=JSN0	CG	
125	JSNO=1 IR=JCO(1)	CG	
125	JCO(1)=NEQS+I	CG	
127	DO 19 IX=1, JSX	20 20	
128	IF (IX.EQ.1) GO TO 18	CG	

		
129	IR=JCO(IX)	CG 129
130 131	AX(1) = AX(IX)	CG 130
132	BX(1)=BX(IX)	CG 131
133 18	CX(1)=CX(IX)	CG 132
133 18	IF (IR.GT.N1) GO TO 19	CG 133
135	IF (ICONX(IR).NE.0) GO TO 19	CG 134
136	IF (I1.LE.IN2) CALL CMWW (IR.I1.IN2.CB.NB.CB.NB.O)	CG 135
137 C	IF (IM1.LE.IM2) CALL CMWS (IR.IM1,IM2.CB(IMX.1).NB.CB.NB.0) LOADING FOR B(WW)PRIME	CG 136
138	IF (NLODF.EQ.0) GO TO 19	CG 137
139	JX=IR-ISV	CG 138
140	IF (JX.LT.1.OR.JX.GT.IT) GO TO 19	CG 139
141	EXK=ZARRAY(IR)	CG 140
142	JSS=JCO(1)	CG 141
143	CB(JX,JSS)=CB(JX,JSS)-(AX(1)+CX(1))*EXK	CG 142
.144 19	CONTINUE	CG 143
145 20	IF (NPCON.EQ.0) GO TO 22	CG 144
146	JSS=NEQP	CG 145
147 C	FILL B(SS)PRIME TO SET OLD PATCH BASIS FUNCTIONS TO ZERO FOR	CG 146
148 C	FATCHES THAT CONNECT TO NEW SEGMENTS	CG 147
149	DO 21 I=1,NPCON	CG 148
150	IX=IPCON(I)*2+N1-ISV	CG 149
151	IR=IX-1	CG 150 CG 151
152	JSS=JSS+1	CG 151
153	IF (IR.GT.O.AND.IR.LE.IT) CB(IR,JSS)=(1.,0.)	CG 152
154	122=122+1	CG 153
155	IF (IX.GT.O.AND.IX.LE.IT) CB(IX,JSS)=(1.,0.)	CG 155
156 21 157 22	CONTINUE	CG 155
157 22 158 C	IF (M2.GT.M) GO TO 23	CG 157
159	FILL B(SW) AND B(SS)	CG 158
160	IF (I1.LE.IN2) CALL CMSW (M2.M.I1,IN2,CB(1,IST),CB,N1,NB,O)	CG 159
161 23	(IM) LE IMZ) CALL CMSS (MZ.M. IM1. TM2 CR(TMY TST) NP ON	CG 160
162	IF (ICASX.EQ.1) GO TO 24	CG 161
163 24	WRITE (14) ((CB(I,J),I=1,IT),J=1,ND) CONTINUE	CG 162
164 C	FILLING B COMPLETE. START ON C AND D	CG 163
165	IT=NPBL	CG 164
166	ISV=~NPBL	CG 165
167	DO 43 IBLK=1,NBBL	CG 166
168	ISV=ISV+NPBL	CG 167
169	ISVV=ISV+NC	CG 168
170	IF (IBLK.EQ.NBBL) IT=NLBL	CG 169
171	IF (ICASX.LT.3) GO TO 27	CG 170
172	DO 26 J=1,IT	CG 171
173	DO 25 I=1,NC	CG 172
174 25	CC(I,J)=(0.,0.)	CG 173
175	DO 26 I=1,ND	CG 174
176 26	CD(I,J)=(0.,0.)	CG 175
177 27	I1=ISVV+1	CG 176
178	I2=ISVV+II	CG 177
179	IN1=I1-M1EQ	CG 178
180	IN2=I2-M1EQ	CG 179
181	IF (IN2.GT.N) IN2=N	CG 180 CG 181
182	IM1=I1-N	CG 181
183	IM2=I2-N	CG 183
184	IF (IM1.LT.M2EQ) IM1=M2EQ	CG 184
185	IF (IM2.GT.MEQ) IM2=MEQ	CG 185
186		CG 186
187 188	IF (IN1.LE.IN2) IMX=NEQN-I1+2	CG 187
189	IF (ICASX.LT.3) GO TO 32	CG 188
190 C	IF (N2.GT.N) GO TO 32	CG 189
190 C	SAME AS DO 24 LOOP TO FILL D(WW) FOR ICASX GREATER THAN 2	CG 190
192	DO 31 J=N2,N CALL TRIO (J)	CG 191
		CG 192

-44-

. -

		CMNGF	7
193 194	DO 29 I=1, JSNO JSS=JCO(I)	CG 193	
195	JSS=JCU(1) IF (JSS.LT.N2) GO TO 28	CG 193 CG 194	
196	JCO(I)=JSS-N1	CG 195	
197	GO TO 29	CG 196	
198 28	JCO(I)=NEQS+ICONX(JSS)	CG 197	
199 29 200		CG 198 CG 199	
201	IF (IN1.LE.IN2) CALL CMWW (J,IN1,IN2.CD,ND,CD,ND,1)	CG 200	
202	IF (IM1.LE.IM2) CALL CMWS (J,IM1,IM2,CD(1,IMX),ND,CD,ND,1) IF (NLOAD.EQ.0) GO TO 31	CG 201	
203	IR=J-N1-ISV	CG 202	
204	IF (IR.LT.1.OR.IR.GT.IT) GO TO 31	CG 203	
205 206	EXK=ZARRAY(J)	CG 204 CG 205	
200	DO 30 I=1, JSNO JSS=JCO(I)	CG 206	
208 30	$CD(JSS, IR)=CD(JSS, IR)-(AX(I)+CX(I)) \cdot EXK$	CG 207	
209 31	CONTINUE	CG 208	
210 32	IF (M2.GT.M) GO TO 33	CG 209	
211 C	FILL D(SW) AND D(SS)	CG 210 CG 211	
212 213	IF (IN1.LE.IN2) CALL CMSW (M2,M,IN1,IN2,CD(IST,1),CD,N1,ND,1)	CG 212	
214 33	IF (IM1.LE.IM2) CALL CMSS (M2.M.IM1.IM2.CD(IST.IMX).ND.1) IF (N1.LT.1) GO TO 39	CG 213	
215 C	FILL C(WW), C(WS), D(WW)PRIME, AND D(WS)PRIME.	CG 214	
216	DO 37 J=1,N1	CG 215 CG 216	
217	CALL TRIO (J)	CG 217	
218 219	IF (NSCON.EQ.0) GO TO 36	CG 218	
220	DO 35 IX=1,JSNO JSS=JCO(IX)	CG 219	
221	IF (JSS.LT.N2) GO TO 34	CG 220	
222	JCO(IX)=JSS+M1EQ	CG 221 CG 222	
223	GO TO 35	CG 222 CG 223	
224 34 225	IR=ICONX(JSS)	CG 224	
226 35	IF (IR.NE.O) JCO(IX)=NEQSP+IR CONTINUE	CG 225	
227 36	IF (IN1.LE.IN2) CALL CMWW (J,IN1,IN2.CC.NC.CD.ND.ITX)	CG 226	
228	IF (IM1.LE.IM2) CALL CMWS (J,IM1,IM2,CC(1,IMX),NC,CD(1,IMX),ND,TTX	CG 227	
		CG 229	
230 37 231	CONTINUE	CG 230	
232 C	IF (NSCON.EQ.D) GO TO 39 FILL C(WW)PRIME	CG 231	
233	DO 38 IX=1,NSCON	CG 232	
234	IR=ISCON(IX)	CG 233 CG 234	
235	JSS=NEQS+IX-ISV	CG 235	
236 237 38		CG 236	
238 39		CG 237	
239	ISS-NEOR TON	CG 238 CG 239	
240 C	FILL C(SS)PRIME	CG 240	
241	DO 40 I=1,NPCON	CG 241	
242 243		CG 242	
244		CG 243 CG 244	
245		CG 244 CG 245	
246	JSS=JSS+1	CG 246	
247		CG 247	
248 40 249 41		CG 248	
249 41 250 C		CG 249 CG 250	
251	IF (IN1.LE.IN2) CALL CMSW (1,M1,IN1,IN2,CC(N2,1),CC,0,NC,1)	CG 251	
252	IF (IM1.LE.IM2) CALL CMSS (1,M1,IM1,IM2,CC(N2,IMX),NC,1)	CG 252	
253 42		CG 253	
254 255		CG 254 CG 255	
256		CG 256	

.

257 43	CONTINUE	CG 257
258	IF(ICASX.EQ.1)RETURN	CG 258
259	REWIND 12	CG 259
260	REWIND 14	CG 260
261	REWIND 15	CG 261
262	RETURN	CG 262
263	END	CG 263-

.

PURPOSE

To control the filling of the interaction matrix.

METHOD

The linear equations resulting from the moment method solution of equations 13, 14 and the negative of equation 15 in Part I are written as

$$\sum_{j=1}^{N} a_{j}A_{ij} + \sum_{j=1}^{2M} b_{j}B_{ij} = E_{i}, \quad i = 1, \dots N$$

$$N \qquad 2M$$

$$\sum_{j=1}^{c} c_{j} c_{kj} + \sum_{j=1}^{d} d_{j} b_{kj} = H_{k}, \qquad k = 1, \dots 2M$$

where N = number of segments

M = number of patches

.

$$A_{ij} = \hat{s}_{i} \cdot (\vec{E} \text{ at } \vec{r}_{i} \text{ due to segment basis function } j)$$

$$B_{ij} = \hat{s}_{i} \cdot (\vec{E} \text{ at } \vec{r}_{i} \text{ due to current on patch } [(j + 1)/2] \text{ in } direction \hat{u}_{j})$$

$$C_{kj} = -\hat{v}_{k} \cdot (\vec{H} \text{ at } \vec{p}_{[(k+1)/2]} \text{ due to segment basis function } j)$$

$$\cdot S_{[(k+1)/2]}$$

$$D_{kj} = -\hat{v}_{k} \cdot (\vec{H} \text{ at } \vec{p}_{[(k+1)/2]} \text{ due to current on patch } [(j+1)/2] \text{ in direction } \hat{u}_{j}) S_{[(k+1)/2]} + \frac{1}{2} \sigma_{kj}$$

$$E_{i} = -\hat{s}_{i} \cdot (\text{incident electric field at } \vec{r}_{i})$$

$$H_{k} = \hat{v}_{k} \cdot (\text{incident magnetic field at } \vec{p}_{[(k+1)/2]}) S_{[(k+1)/2]}$$

,

$$\begin{split} \bar{\mathbf{p}}_{i} &= \text{position of the center of patch i} \\ \hat{\mathbf{s}}_{i} &= \text{unit vector in the direction of segment i} \\ \hat{\mathbf{u}}_{i} &= \begin{cases} \hat{\mathbf{t}}_{1} & \text{if i is odd} \\ \hat{\mathbf{t}}_{2} & \text{if i is even} \end{cases} \text{ for patch } [(i+1)/2] \\ \hat{\mathbf{v}}_{i} &= \begin{cases} \hat{\mathbf{t}}_{2} & \text{if i is odd} \\ \hat{\mathbf{t}}_{1} & \text{if i is even} \end{cases} \text{ for patch } [(i+1)/2] \\ \text{for patch } [(i+1)/2] \\ \hat{\mathbf{s}}_{i} &= 1 & \text{if } \hat{\mathbf{t}}_{1} \times \hat{\mathbf{t}}_{2} = \hat{\mathbf{n}} \text{ on patch i} \\ -1 & \text{if } \hat{\mathbf{t}}_{1} \times \hat{\mathbf{t}}_{2} = -\hat{\mathbf{n}} \text{ on patch i} \\ \sigma_{kj} &= -1 & \text{if } k = j = \text{odd} \\ +1 & \text{if } k = j = \text{even} \\ 0 & \text{if } k \neq j \end{split}$$

The basis function amplitudes a_j , b_j , c_j and d_j are determined later by solving the matrix equation of order N + 2M.

The matrix elements are computed by calling subroutines CMWW, CMSW, CMWS, and CMSS for the elements of A, B, C and D respectively. For A and C the components of all basis functions that extend across segment J are computed by calling TRIO at CM 52. CMWW and CMWS are then called to compute the components of A or C due to these basis function components on segment J.

If segment j, with length Δ_j , is loaded with impedance Z_j the elements of A are modified as $A_{jk} = A_{jk} - \frac{Z_j}{\Delta j} X$ (value of basis function k at the center of segment j) for k = the numbers of all basis functions that extend onto segment j. The summation over values of k (k = JSS) for loading on segment J occurs at CM 68.

The submatrices are stored in the array CM in transposed form. All references to rows and columns, here, apply to the nontransposed matrices. Thus "row" in this discussion refers to the second index of CM in the code. For a structure without symmetry the submatrices are stored in the order

 $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$

If the complete matrix is too large for the array CM then blocks of rows are filled and written on file ll. A block may then contain rows from A and B, rows from C and D or a combination. The row of CM at which C and D start is computed as IST.

For a structure having p symmetric sections the submatrices are stored in the form

$$\begin{bmatrix} A_1 & B_1 & A_2 & B_2 & A_p & B_p \\ C_1 & D_1 & C_2 & D_2 & C_p & D_p \end{bmatrix}$$
$$\begin{bmatrix} B_i \\ D_i \end{bmatrix}$$

represents A_i in the first row of submatrices in equation 108 of Part I. Each call to CMWW and CMWS may fill elements of A_i or C_i for any value of i. The column indices in array JCO are adjusted at CM 55 to allow for the columns occupied by the B_i and D_i matrices. B_i and D_i are filled for each value of i in the loop from CM 75 to CM 81. The Fourier transform of the submatrices, or the transform for planar symmetry (equation 116 of Part I) is computed from CM 85 to CM 100.

SYMBOL DICTIONARY

where $\begin{bmatrix} A \\ i \\ C \end{bmatrix}$

СМ	= array for the matrix
I l	= number of first equation in a block (patch equation +N for patches)
I 2	= number of the last equation in a block
IEXK X	= 1 to use extended thin wire kernel on wires, 0 otherwise
IML	= number of first patch equation in a block

IM2	= number of last patch equation in a block
IN2	= number of the last segment equation in a block
IOUT	= number of real numbers in a block for output
I PR	= row in CM (second index) for segment J
IST	= row in CM of the first patch equation
ISV	= I1 - 1
IT	= number of rows in a block
I XBLK 1	= block number
JMI	= number of first patch in a symmetric section
JM2	= number of the last patch in a symmetric section
JST	= column in CM of the first patch equation for a symmetric block
MP2	= number of patch equations
NEQ	= total number of equations
NOP	= number of symmetric sections
NPEQ	= number of equations in a symmetric section
NROW	= row dimensions of the transposed CM array
RKHX	= minimum interaction distance at which the infinitesimal dipole
	approximation is used for the field of a segment
ZAJ	$= Z_{i}/\Delta_{i}$

				UM
	с	SUBROUTINE CMSET (NROW,CM,RKHX,IEXKX)	См	1
	с с	CMSET SETS UP THE COMPLEX STRUCTURE MATRIX IN THE ARRAY CM	См См	2 3
5 6		COMPLEX CM,ZARRAY,ZAJ,ETK,ETS,ETC,EXK,EYK,EZK,EXS,EYS,EZS,EXC,EYC, 1EZC,SSX,D,DETER		4 5
7 8		COMMON /DATA/ LD.N1.N2.N.NP.M1.M2 M MP X(300) X(300) 7(300) ST(300)	СМ СМ	6 7
9		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(2300), WLAM, IPSYM	CM	8 9
10 11		COMMON /MATPAR/ ICASE,NBLOKS,NPBLK,NLAST,NBLSYM,NPSYM,NLSYM,IMAT,I 1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	См	10
12 13		COMMON /SMAT/ SSX(16,16) COMMON /SCRATM/ D(600)	СМ СМ	11 12
14		COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF	СМ СМ	13 14
15 16		COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP 1CON(10), NPCON	CM	15 16
17 18		COMMON /DATAJ/ S.B.XJ.YJ.ZJ,CABJ,SABJ,SALPJ,EXK.EYK,EZK,EXS.EYS.EZ 1S.EXC.EYC.EZC.RKH,IEXK.IND1,IND2,IPGND	СМ	17
19 20		DIMENSION CM(NROW,1)	См См	18 19
21		MP2=2*MP NPEQ=NP+MP2	CM	20
22		NEQ=N+2*M	СМ См	21 22
23		NOP=NEQ/NPEQ	СМ	23
24		IF (ICASE.GT.2) REWIND 11	См	24
25 26		RKH=RKHX IEXK=IEXKX	СM	25
27		IOUT=2*NPBLK*NROW	CM	26
28		IT=NPBLK	СМ СМ	27 28
29	С		См	29
30		CYCLE OVER MATRIX BLOCKS	СМ	30
31	С		СМ	31
32 33		DO 13 IXBLK1=1,NBLOKS ISV=(IXBLK1-1)*NPBLK	CM	32
34		ISV=(IXBLKI-I)*NPBLK IF (IXBLKI.EQ.NBLOKS) IT=NLAST	CM CM	33 34
35		DO 1 $I=1, NROW$	CM	35
36		DO 1 J=1,IT	См	36
37	1	CM(I,J)=(0.,0.)	СМ	37
38		I1=ISV+1	СМ	38
39			СМ	39
40 41		IN2=I2 IF (IN2.GT.NP) IN2=NP	CM	40
42		IM1=I1-NP	CM CM	41 42
43		IM2=I2-NP	СМ	43
44		IF (IM1.LT.1) IM1≓1	См	44
45		IST=1	СМ	45
46		IF (I1.LE.NP) IST=NP-I1+2	CM	46
47 48		IF (N.EQ.0) GO TO 5	СМ СМ	47 48
40 49		WIRE SOURCE LOOP	CM	40
50			СМ	50
51		DO 4 J=1,N	СМ	51
52		CALL TRIO (J)	СМ	52
53		DO 2 I=1, JSNO	CM	53
54	-	IJ=JCO(I)	CM CM	54 55
55 56	2	JCO(I)=((IJ~1)/NP)*MP2+IJ IF (I1.LE.IN2) CALL CMWW (J,I1.IN2,CM,NROW,CM,NROW,1)	CM	56
57		IF (INT.LE.IM2) CALL CMWS (J,IM1,IM2,CM(1,IST),NROW,CM,NROW,1)	СМ	57
58		IF (NLOAD.EQ.O) GO TO 4	СМ	58
59	С		СМ	59
60		MATRIX ELEMENTS MODIFIED BY LOADING	CM	60
61			CM CM	61 62
62		IF (J.GT.NP) GO TO 4 IPR=J-ISV	СМ	63
63 64		IF (IPR.LT.1.OR.IPR.GT.IT) GO TO 4	СМ	64
- '				

65	ZAJ=ZARRAY(J)		
66	DO 3 I=1, JSNO	СМ	65
67	JSS=JCO(I)	СМ	66
68 3	CM(JSS,IPR)=CM(JSS,IPR)-(AX(I)+CX(I))*ZAJ	СМ	67
69 4	CONTINUE	См	68
70 5	IF (M.EQ.0) GO TO 7	СМ	69
71 C	MATRIX ELEMENTS FOR PATCH CURRENT SOURCES	СМ	70
72	JM1=1-MP	См	71
73	JM2=0	СМ	72
74	JST=1-MP2	СМ	73
75	DO 6 I=1,NOP	СМ	74
76	JM1=JM1+MP	См	75
77	JM2=JM2+MP	СМ	76
78	JST=JST+NPEQ	СМ	77
79	IF (I1.LE.IN2) CALL CMSW (IM1 IM2 TI TN2 OUT OF TA THE	См	78
80	IF (IM1.LE.IM2) CALL CMSS (JM1, JM2, IM1, IM2, CM(JST, 1), CM, 0, NROW, 1) CONTINUE	СМ	79
816		СМ	80
82 7	IF (ICASE.EQ.1) GO TO 13	СМ	81
83	IF (ICASE.EQ.3) GO TO 12	СМ	82
84 C	COMBINE ELEMENTS FOR SYMMETRY MODES	СM	83
85	DO 11 I=1,IT	СМ	84
86	DO 11 J=1,NPEQ	СМ	85
87	DO 8 K=1,NOP	CM	86
88	KA=J+(K-1)*NPEQ	СМ	87
898	D(K)=CM(KA,I)	CM	88
90	DETER=D(1)	CM	89
91	DO 9 KK=2,NOP	СМ СМ	90
92 9	DETER=DETER+D(KK)	СМ	91
93	CM(J,I)=DETER	См	92 93
94	DO 11 K=2,NOP	СМ	
95	KA=J+(K-1)*NPEQ	См	94 95
96	DETER=D(1)	СM	96
97	DO 10 KK=2,NOP	СМ	90 97
98 10	DETER≈DETER+D(KK)•SSX(K,KK)	CM	98
99	CM(KA,I)=DETER	CM	99
100 11	CONTINUE	CM 1	
101	IF (ICASE.LT.3) GO TO 13	CM 1	
102 C	WRITE BLOCK FOR OUT-OF-CORE CASES.	CM 1	
103 12	CALL BLCKOT (CM,11,1,IOUT,1,31)	СМ 1	
104 13	CONTINUE	CM 1	
105	IF (ICASE.GT.2) REWIND 11	CM 1	
106	RETURN	СМ 1	
107	END	CM 1	

To compute and store matrix elements representing the H field at patch centers due to the current on patches.

METHOD

CMSS computes the matrix elements D_{kj} defined in the description of subroutine CMSET. Subroutine HINTG is called to compute the magnetic field at the center of patch I due to current on patch J. H due to the current \hat{t}_1 on patch J is stored in EXK, EYK and EZK, while H due to current \hat{t}_2 is stored in EXS, EYS and EZS. The term 0.5 σ_{kj} in D_{kj} is added at CM 61 and CM 62 for odd and even equations. The matrix elements are stored in array CM from SS63 to SS78 in either normal or transposed order. Elements for both the even and odd equations are stored if both equations are within the block.

SYMBOL DICTIONARY

СМ	= array for matrix storage
G11	= D _{ki} for k odd, j odd
G12	= D_{kj} for k odd, j even
G 2 1	= D_{kj} for k even, j odd
G22	= D _{kj} for k even, j even
11	= patch number for first equation
I 2	= patch number for last equation
LCOMP	= equation number for the odd numbered equation for
	observation patch I
[[]	= location of the odd numbered equation in CM
[[2	= location of the even numbered equation in CM
IL	= array location for coordinates of patch I
[M]	= patch equation number for first equation in block
IM2	= patch equation number for last equation in block
LTRP	= 0 or 1 to select normal or transposed filling of CM
J1	= number of first source patch
J 2	= number of last source patch

= column in non-transposed matrix, of the first JJ1equation for patch J JJ2 = column of second equation for patch J JL = array location for coordinates of patch J NROW = row dimension of CM TIXI, TIYI, TIZI T2XI, T2YI, T2ZI = x, y and z components of \hat{t}_1 or \hat{t}_2 for patch I TlXJ, TlYJ, TlZJ or J T2XJ, T2YJ, T2ZJ = coordinates of center of patch I XI, YI, ZI

-54-

CMSS

			0
1	SUBROUTINE CMSS (J1, J2, IM1, IM2, CM, NROW, ITRP)	SS	1
2	C CMSS COMPUTES MATRIX ELEMENTS FOR SURFACE-SURFACE INTERACTIONS.	SS	
3	COMPLEX G11,G12,G21,G22,CM,EXK,EYK,EZK,EXS,EYS,EZS,EXC,EYC,EZC		2
4	COMMON /DATA/ LD N1 N2 N NP V1 N2 N V2 V(100) V(100) V(100)	SS	3
5	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	SS	4
	1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(SS	5
6	2300),WLAM, IPSYM	SS	6
7	COMMON /ANGL/ SALP(300)	SS	7
8	COMMON /DATAJ/ S, B, XJ, YJ, ZJ, CABJ, SABJ, SALPJ, EXK, EYK, EZK, EXS, EYS, EZ	66	
9	1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND		8
10		SS	9
	DIMENSION CM(NROW, 1)	SS	10
11	DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)	SS	11
12	EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON	SS	12
13	12), (T2Z,ITAG)	SS	13
14	EQUIVALENCE (T1XJ,CABJ), (T1YJ,SABJ), (T1ZJ,SALPJ), (T2XJ,B), (T2Y	22	14
15	1J,IND1), (T2ZJ,IND2)	SS	
16	LDP=LD+1		15
		SS	16
17	I1=(IM1+1)/2	SS	17
18	I2=(IM2+1)/2	SS	18
19	ICOMP=I1*2-3	SS	19
20	II1=-1	SS	20
21	IF $(ICOMP+2,LT,IM1)$ II1=-2	SS	21
22		SS	22
23	D0 5 I=I1, I2		
		SS	23
24	IL=LDP-I	SS	24
25	ICOMP=ICOMP+2	SS	25
26	II1=II1+2	SS	26
27	II2=II1+1	SS	27
28	T1XI=T1X(IL)*SALP(IL)	SS	28
29	TIYI=TIY(IL) • SALP(IL)	SS	29
30	T1ZI=T1Z(IL) * SALP(IL)	SS	30
31	T2XI=T2X(IL)+SALP(IL)	SS	31
32	· T2YI=T2Y(IL) • SALP(IL)	SS	32
33	T2ZI=T2Z(IL) *SALP(IL)	SS	33
34	XI=X(IL)	SS	34
35	YI=Y(IL)	SS	35
		SS	36
36	ZI=Z(IL)		
37	JJ1=-1	SS	37
38		SS	38
39	DO 5 J=J1,J2	\$S	39
40	JL=LDP-J	SS	40
41	J J J = J J J + 2	SS	41
42	JJ2 = JJ1 + 1	SS	42
43	S=BI(JL)	SS	43
		SS	44
44	XJ=X(JL)		
45	YJ=Y(JL)	SS	45
46	ZJ=Z(JL)	SS	46
47	T1XJ=T1X(JL)	SS	47
48	T1YJ=T1Y(JL)	SS	48
49	T1ZJ=T1Z(JL)	SS	49
50		SS	50
		SS	51
51	T2YJ=T2Y(JL)		
52	T2Z J=T2Z(JL)	SS	52
53		SS	53
54		SS	54
55		SS	55
56		SS	56
		SS	57
57		SS	58
58		SS	59
59			
60		SS	60
61	1 IF (ITRP.NE.O) GO TO 3	SS	61
62	C NORMAL FILL	SS	62
63		22	63
64		SS	64

CMSS

65	CM(II1,JJ2)=G12	SS	65
66 2		SS	66
67	CM(II2,JJ1)=G21	SS	67
68	CM(II2,JJ2)=G22	SS	68
69	GO TO 5	r ss	69
70 C	TRANSPOSED FILL		
71 3	IF (ICOMP.LT.IM1) GO TO 4	SS	70
72	CM(JJ1,II1)=G11	SS	71
73	CM(JJ2,II1)=G12	SS	72
74 4		SS	73
75	(**************************************	SS	74
	CM(JJ1,II2)=G21	SS	75
76	CM(JJ2,II2)=G22	SS	76
77 5		SS	77
78	RETURN	SS	78
7 9	END	SS	79-

..

PURPOSE

To compute and store matrix elements representing the electric field at segment centers due to the current on patches.

METHOD

SW30 - SW35	Coordinates of observation segment are stored.
SW36 - SW42	If either end of the observation segment connects to a
	surface IPCH is set to the number of the first of the
	four patches at the connection point.
SW48 - SW57	Coordinates of the source patch are stored in

COMMON/DATAJ/.

- SW61 SW86 IF IPCH = J then patch J is the first patch at the point where segment I connects to the surface. Subroutine PCINT is called to integrate the current over the four patches at the connection point. The current on the patches includes the eight basis functions of the four patches and a portion of the basis function from the segment. Hence contributions to nine matrix elements are generated and stored in array EMEL. The field due to the segment basis function extending onto the patches is stored in array CW at SW76 or SW78. The fields due to the first patch basis function, EMEL(1) and EMEL(5), are then stored in array CM at SW80 and SW81 or at SW83 and SW84. ICGO is then incremented. For the next three times through the loop over J the call to PCINT is skipped at SW63 and the remaining values in EMEL are stored.
- SW88 SW96 If segment I and patch J are not connected, subroutine UNERE is called to compute the electric field due to the current on the patch with the current treated as Hertzian dipoles in the directions \hat{t}_1 and \hat{t}_2 . The matrix elements are stored in CM.

-57-

SW102 - SW138 This is a special section of code to compute the electric field due to the component of a segment basis function that extends onto connected patches. It is used at line CG112 of subroutine CMNGF for the case where the connected segment and patches are in the NGF file and a new segment is connected to the outer end of the NGF segment modifying its basis function. Subroutine PCINT is called to evaluate the nine matrix elements. Only EMEL(9) is used since the patch basis functions have not been modified.

SYMBOL DICTIONARY

CAB I	= x component of i in direction of segment I
СМ	= array for E due to patch basis functions
CW	= array for E due to segment basis function extending onto
	surface at connection point
EMEL	= array of matrix elements from integrating over surface
FSIGN	= +1 depending on which end of segment connects to surface
11	<pre>= number of first observation segment</pre>
T 2	= number of last observation segment
I CGØ	= index for matrix elements at connection point
IL	= index for segment basis function in CW
IP	= 1 for direct field, 2 for image in ground
IPCH	= number of first patch connecting to a segment
ITRP	= 0 for normal matrix fill
	l for transposed fill
	-l for special NGF case
J	= source patch
Jl	= first source patch
J2	= last source patch
JL	= index for source patch in CM
JS	= index for patch coordinates
К	= index in CM or CW for observation segment
NCW	= index offset for CW

-58-

NEQS	= number of equations excluding NGF
NROW	= row dimensions of CM and CW
ΡI	= pi
ΡX	= $\sin k(s - s_0)$ for s at the end of the segment
ΡY	= cos k(s - s ₀) connected to the surface
SABI	= y component of i in direction of segment I
SALPI	= z component of i in direction of segment I
XI, YI, ZI	= center of observation segment

CMSW

,

-

CMSW

1	SUBROUTINE CHSW (11 12 T1 T2 CH CH CH CH CH		
2 C	SUBROUTINE CMSW (J1, J2, I1, I2, CM, CW, NCW, NROW, ITRP) COMPUTES MATRIX ELEMENTS FOR E ALONG WIRES DUE TO PATCH CURRENT	SW	1
3	COMPLEX CM. ZRATI, ZRATI2, TI, EXK.EYK.EZK, EXS.EYS, EZS, EXC. EYC. EZC. EME	SW	2
4	1L, CW, FRATI		3
5	COMMON /DATA/ LD.N1.N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300)	SW	4
6	1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(2300), WIAN, TESTI	SW	5
7	2300), WLAM, IPSYM		6
8	COMMON /ANGL/ SALP(300)	SW	7
9	COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR,	SW	8
10	111 CK1,11,12	Citt	9
11	COMMON /DATAJ/ S, B, XJ, YJ, ZJ, CABJ, SABJ, SALPJ, EXK, EYK, EZK, EXS, EYS, EZ	211	10 11
12	IS, EXC, ETC, EZC, RKH, IEXK, IND1, IND2, IPGND	CW	12
13	COMMON /SEGJ/ $AX(30)$, $BX(30)$, $CX(30)$, $JCO(30)$, $JSNO$ TSCON(50) NSCON TR	SW	13
	TCON(TU), NPCUN	SW	14
15	DIMENSION CAB(1), SAB(1), CM(NROW,1), CW(NROW,1)	SW	15
16	DIMENSION $T1X(1)$, $T1Y(1)$, $T1Z(1)$, $T2X(1)$, $T2Y(1)$, $T2Z(1)$, EMEL(9)	C144	16
17	CONTALENCE (11X,SI), (11Y,ALP), (T1Z,BET), (T2X,TCON1) (T2X TCON	SW	17
18 19	12), (122,11AG), (CAB,ALP), (SAB,BET)	SW	18
	EQUIVALENCE (T1XJ,CABJ), (T1YJ,SABJ), (T1ZJ,SALPJ), (T2XJ,B), (T2Y	SW	19
21	1J,IND1), (T2ZJ,IND2)	SW	20
22	DATA PI/3.141592654/ LDP=LD+1	SW	21
23	NEQS=N-N1+2*(M-M1)	SW	22
24	IF (ITRP.LT.O) GO TO 13	SW	23
25	K=0	SW	24
26	ICGO=1	SW	25
27 C	OBSERVATION LOOP	SW	26
28	DO 12 I=I1,I2	SW	27
29	K=K+1	SW SW	28
30	XI=X(I)	SW	29 30
31	YI=Y(I)	SW	31
32	ZI=Z(I)	SW	32
33	CABI=CAB(I)	SW	33
34	SABI=SAB(I)	S₩	34
35	SALPI=SALP(I)	SW	35
36	IPCH=0	SW	36
37	IF (ICON1(I).LT.10000) GO TO 1	S₩	37
38	IPCH=ICON1(I)-10000	SW	38
39	FSIGN=-1.	SW	39
40 1 41	IF (ICON2(I).LT.10000) GO TO 2	SW	40
42	IPCH=ICON2(I)-10000 FSIGN=1.	SW	41
43 2	JL=0	SW	42
44 C	SOURCE LOOP	SW	43
45	DO 12 J=J1,J2	SW	44
46	JS=LDP-J	SW SW	45
47	JL=JL+2	SW SW	46 47
48	T1XJ=T1X(JS)	SW	48
49	TIYJ=TIY(JS)	SW	49
50	T1ZJ=T1Z(JS)	SW	50
51	T2XJ=T2X(JS)	SW	51
52	T2YJ=T2Y(JS)	SW	52
53	T2ZJ=T2Z(JS)	SW	53
54	XJ=X(JS)	SW	54
55		S₩	55
56 57	ZJ=Z(JS)	SW	56
57 58 C		SW	57
58 C		SW	58
60		SW	59
61	TE (TROUND LAND TOOD TO I) OD TO D	SW	60
62		SW	61
63	IF (ICGO.GT.1) GO TO 6	SW SW	62 63
64	CALL POINT (VT VT 7T CART SADT SALDT EVEN)	SW SW	64
	· · · · · · · · · · · · · · · · · · ·	.	

					φ1 I.
65		PY=PI*SI(I)*FSIGN	SW	65	
66		PX=SIN(PY)	SW	66	
67		PY=COS(PY)	SW	67	
68		EXC=EMEL(9) * FSIGN	SW	68	
69		CALL TRIO (I)	SW	69	
70		IF (I.GT.NI) GO TO 3	SW	70	
71		IL=NEQS+ICONX(I)	SW	71	
72		GO TO 4	SW	72	
73		IL=I-NCW	SW	73	
74		IF (I.LE.NP) IL=((IL-1)/NP)*2*MP+IL	SW	74	
75		IF (ITRP.NE.0) GO TO 5 CW(K, TL) = CW(K, TL) + EVCA(AV(15NO) + DV(15NO) + DV + CV(15NO) + DV)	SW	75	
76 77		CW(K,IL)=CW(K,IL)+EXC*(AX(JSNO)+BX(JSNO)*PX+CX(JSNO)*PY)	SW	76	
78		GO TO 6 CW(IL,K)=CW(IL,K)+EXC*(AX(JSNO)+BX(JSNO)*PX+CX(JSNO)*PY)	SW SW	77 78	
79		IF (ITRP.NE.0) GO TO 7	SW	79	
80		CM(K, JL-1) = EMEL(ICGO)	SW	80	
81		CM(K, JL) = EMEL(ICGO+4)	SW	81	
82		GO TO 8	SW	82	
	7	CM(JL-1,K)=EMEL(ICGO)	SW	83	
84		CM(JL,K)=EMEL(ICGO+4)	SW	84	
	8	ICGO=ICGO+1	SW	85	
86		IF (ICGO.EQ.5) ICGO=1	SW	86	
87		GO TO 11	SW	87	
88	9	CALL UNERE (XI,YI,ZI)	SW	88	
89		IF (ITRP.NE.O) GO TO 10	SW	89	
	С	NORMAL FILL	SW	90	
. 91		CM(K,JL-1)=CM(K,JL-1)+EXK*CABI+EYK*SABI+EZK*SALPI	SW	91	
92		CM(K,JL)=CM(K,JL)+EXS*CABI+EYS*SABI+EZS*SALPI	SW	92	
93			SW SW	93 94	
	C 10	TRANSPOSED FILL CM(JL-1,K)=CM(JL-1,K)+EXK*CABI+EYK*SABI+EZK*SALPI	SW	95	
96		CM(JL,K)=CM(JL,K)+EXS*CABI+EYS*SABI+EZS*SALPI	SW	96	
	, 11	CONTINUE	SW	97	
	12	CONTINUE	SW	98	
99		RETURN	SW	99	
100		FOR OLD SEG. CONNECTING TO OLD PATCH ON ONE END AND NEW SEG. ON		100	
101		OTHER END INTEGRATE SINGULAR COMPONENT (9) OF SURFACE CURRENT ONLY	SW	101	
102	2 13	IF (J1.LT.I1.OR.J1.GT.I2) GO TO 16	SW	102	
103	5	IPCH=ICON1(J1)	SW	103	
104		IF (IPCH.LT.10000) GO TO 14		104	
105		IPCH=IPCH-10000		105	
106		FSIGN=-1.		106	
107				107	
	3 14	IPCH=ICON2(J1)		108	
109		IF (IPCH.LT.10000) GO TO 16		109	
11(11		IPCH=IPCH-10000 FSIGN=1.		111	
	2 15	IF (IPCH.GT.M1) GO TO 16		112	
11.		JS=LDP-IPCH		113	
114		IPGND=1		114	
115		T1XJ=T1X(JS)		115	
116	5	T1YJ=T1Y(JS)	SW	116	
11	7	TIZJ=TIZ(JS)	SW	117	
118		T2XJ=T2X(JS)		118	
119		T2YJ=T2Y(JS)		119	
120		T2ZJ=T2Z(JS)		120	
12		X J=X (Z L) X=L X		121	
12:		(2L)Y=LY (2L)		123	
12		ZJ=Z(JS) S=BI(JS)		124	
12		XI=X(J1)		125	
12		YI=X(1)		120	
12		ZI=Z(JI)	SW	127	,
12		CABI=CAB(J1)	SW	128	1

129	SABI=SAB(J1)	
130	SALPI=SALP(J1)	SW 129
131	CALL PCINT (XI,YI,ZI,CABI,SABI,SALPI,EMEL)	SW 130
132	PY=PI*SI(J1)*FSIGN	SW 131
133	PX=SIN(PY)	SW 132
134	PY=COS(PY)	SW 133
135	EXC=EMEL(9) + FSIGN	- SW 134
136	IL=JCO(JSNO)	SW 135
137	K=J1-I1+1	SW 136
138	CW(K,IL)=CW(K,IL)+EXC*(AX(JSNO)+BX(JSNO)*PX+CX(JSNO)*PY) RFTURN	SW 137
139 16	RETURN (SINC) PX+CX(JSNO)*PY)	SW 138
140	END	SW 139
		SW 140-

.

PURPOSE

To compute and store matrix elements representing the magnetic field at patch centers due to the current on wire segments.

METHOD

Matrix elements are computed for patch equations numbered II through I2 with the source segment J. For odd numbered equations the matrix element represents the first term on the right side of equation 14 of Part I. For even numbered equations it is the negative of the first term on the right side of equation 15. For equation II and for all odd numbered equations subroutine HSFLD is called to compute the H field at the center of the patch due to constant, sin $k(s - s_0)$ and cos $k(s - s_0)$ currents on segment J. The required component of the field, $-\hat{t}_2 \cdot \hat{H}$ or $-\hat{t}_1 \cdot \hat{H}$ for odd or even equations respectively, is computed from WS49 to WS51. Multiplication by SALP(JS) reverses the sign when $(\hat{t}_1, \hat{t}_2, \hat{n})$ has a left-hand orientation on a patch formed by reflection. The field component for each basis function component on segment J is computed and stored for WS56 through WS75. Storage of the matrix elements is similar to that in subroutine CMWW.

SYMBOL DICTIONARY

СМ	= array for matrix elements
CW	= array for matrix elements (NGF only)
ETK)	= $-\hat{t}_2$ · \hat{H} or $-\hat{t}_1$ · \hat{H} due to current of constant,
ETS	$sin k(s - s_0)$, or cos k(s - s_0) respectively
ETC	
L	= equation number
11	= number of first equation
τ2	= number of second equation
ĨK	= 0 if I is even, 1 if I is odd
ГРАТС Н	= patch number for equation I
I PR	= relative matrix location for equation I. Position in complete
	matrix depends on the address of CM in the call to CMWS

CMWS

ITRP	= 0 for non-transposed fill
	l for transposed fill
	2 for transposed fill for NGF
J	= source segment number
JS	= location in COMMON/DATA/ of parameters for patch J
JX	= matrix index for a particular basis function
LDP	= LD + 1
NR	= row dimension of CM
NW	= row dimension of CW
TX	
TY }	= x, y, and z components of \hat{t}_1 or \hat{t}_2
τzJ	-
XI)	
YI }	= x, y and z coordinates of the center of the patch at
ZI)	which the field is computed

•

CMWS

					U
1 2	(ws WS	1 2	
	(THE THE MAN THE TOTAL TOTAL ACTIONS	WS WS	2 3 4	
5		COMPLEX CM, CW, ETK, ETS, ETC, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC,	WS	5	
6		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),ST(300	ws	6	
7		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(WS	7	
8		2300), WLAM, IPSYM	ws	8	
9		COMMON /ANGL/ SALP(300)	WS	9	
10		COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	WS	10	
11		1CON(10), NPCON	WS	11	
13		COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ 1S.EXC,EYC,EZC,RKH,IEXK,IND1,IND2,IPGND		12	
14		DIMENSION $CM(NR, 1)$, $CW(NW, 1)$, $CAB(1)$, $SAB(1)$	WS	13	
15		DIMENSION $T1X(1)$, $T1Y(1)$, $T1Z(1)$, $T2X(1)$, $T2Y(1)$, $T2Z(1)$	WS WS	1 4 15	
16		EQUIVALENCE (CAB, ALP), (SAB, BET), (T1X, SI), (T1Y, ALP), (T1Z, BET)	ws	16	
17		EQUIVALENCE (T2X, ICON1), (T2Y, ICON2), (T2Z, ITAG)	WS	17	
18		LDP=LD+1	WS	18	
19		S=SI(J)	WS	19	
20		8=BI(J)	WS	20	
21 22		(L) X=L X (L) Y=L Y	WS	21	
23		ZJ=Z(J)	WS WS	22 23	
24		CABJ=CAB(J)	WS	24	
25		SABJ=SAB(J)	WS	25	
26		SALPJ=SALP(J)	WS	26	
27			WS	27	
28			WS	28	
29 30		C IPR=0	WS	29	
31		DO 9 I=I1,I2	WS WS	30 31	
32		IPR=IPR+1	WS	32	
33		IPATCH=(I+1)/2	WS	33	
34		IK = I - (I/2) * 2	WS	34	
35		IF (IK.EQ.O.AND.IPR.NE.1) GO TO 1	WS	35	
36		JS=LDP-IPATCH	WS	36	
37 38		(ZL)X=IX (ZL)X=IX	WS WS	37 38	
39		ZI=Z(JS)	WS	39	
40		CALL HSFLD (XI,YI,ZI,O.)	ws	40	
41		IF (IK.EQ.0) GO TO 1	WS	41	
42	2	TX=T2X(JS)	WS	42	
43		TY=T2Y(JS)	WS	43	
44		TZ=T2Z(JS)	WS	44 45	
45 46		GO TO 2 1 TX=T1X(JS)	WS WS	43 46	
47		TY=T1Y(JS)	ws	47	
48		TZ=T1Z(JS)	ws	48	
49)		WS	49	
50)	ETS=-(EXS*TX+EYS*TY+EZS*TZ)*SALP(JS)	WS	50	
51		ETC=~(EXC*TX+EYC*TY+EZC*TZ)*SALP(JS)	WS	51	
52			WS WS	52 53	
53 54			WS	54	
55			ws	55	
56		IF (ITRP.NE.0) GO TO 4	WS	56	
57	7	C NORMAL FILL	WS	57	
58		DO 3 IJ=1, JSNO	WS	58	
59		JX=JCO(IJ) 3 CM(IPR,JX)=CM(IPR,JX)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WS WS	59 60	
60		3 CM(IPR,JX)=CM(IPR,JX)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ) GO TO 9	ws	61	
		4 IF (ITRP.EQ.2) GO TO 6	ws	62	
		C TRANSPOSED FILL	WS	63	
64	4	00 5 IJ=1, J5N0	ws	64	

CMWS

65	JX=JCO(IJ)		
66 5	CM(JX, IPR)=CM(JX, IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WS	65
67	GO TO 9	WS	66
68 C	TRANSPOSED FILL ~ C(WS) AND D(WS)PRIME (=CW)	WS	67
69 6	DO 8 IJ=1, JSNO	ws	65
70	JX=JCO(IJ)	WS	69
71	IF (JX.GT.NR) GO TO 7	WS	70
72		WS	71
73	CM(JX,IPR)=CM(JX,IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ) GO TO 8	WS	72
747	JX=JX-NR	WS	73
75		₩S	74
768	CW(JX,IPR)=CW(JX,IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WS	75
	CONTINUE	ws	76
779	CONTINUE	WS	77
78	RETURN	ws	
79	END		78
		WS	79-

PURPOSE

To call subroutines to compute the electric field at segment centers due to current on other segments and to store matrix elements in array locations.

METHOD

- WW17 WW24 Parameters of source segment (J) are stored in COMMON/DATAJ/.
- WW27 WW43 First end of segment J is tested to determine whether the extended thin wire approximation can be used. It cannot be used at a junction of more than two wires (WW30), at a bend (WW37), at a change in radius (WW38), or at the base of a non-vertical segment connected to the ground (WW33).
- WW44 WW60 Second end of segment J is tested.
- WW66 Loop over observation segments ranges from Il to I2. The index IPR starts at 1 so the matrix element for Il is stored in the first row or column of the array CM. The location in the complete matrix is determined by the address given for CM when CMWW is called.
- ww76 EFLD computes the electric fields at (XI, YI, ZI) due to segment J and stores them in COMMON/DATAJ/.

wW77 - wW79 Electric field tangent to segment I is computed.

- WW84 WW103 Matrix elements are formed by combining the field components.
- WW86 WW88 Matrix elements are stored in non-transposed order.
- WW92 WW94 Matrix elements are stored in transposed order.
- WW97 WW104 When the source segment is from a NGF file the matrix elements will normally be stored in submatrix C of the NGF matrix structure. When the segment connects to a new segment, however, contributions to submatrix D result. The C and D contributions are stored in CM and CW, respectively, in transposed order.

CMWW

SYMBOL DICTIONARY

AI	= radius of observation segment
CABI	= x component of unit vector in direction of segment
СМ	= array for matrix elements
CW	= array for matrix elements (NGF only)
ETK	= E field tangent to segment I due to current of
ETS	constant, sin k(s - s_0) and cos k(s - s_0)
ETC	distribution, respectively, on segment J.
11	= first observation segment
12	= final observation segment
IJ	= 0 for special treatment when $I = J$
IPR	= relative matrix location for observation point
I TR P	= 0 for non-transposed fill
	l for transposed fill
	2 for transposed fill for NGF
J	= source segment number
JX	= matrix index for a particular basis function
NR	= row dimension of CM
NW	= row dimension of CW
SABI	= y component of unit vector in direction of segment
SALPI	= z component of unit vector in direction of segment
XI, YI, ZI	= coordinates of center of segment I.

CONSTANTS

0.9999999 = test for collinear segments

CMWW

					CI
1 2	c	SUBROUTINE CMWW (J,I1,I2,CM,NR,CW,NW,ITRP)	ww	1	
3		CMWW COMPUTES MATRIX ELEMENTS FOR WIRE-WIRE INTERACTIONS	ww ww	2 3	
4	C		WW	3 4	
5		COMPLEX CM, CW, ETK, ETS, ETC, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC	ww	5	
6 7		COMMON /DATA/ LD, N1, N2, N, NP, M1, M2, M, MP, X(300), Y(300), Z(300), SI(300)	ww	6	
8		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(2300),WLAM,IPSYM		7	
9		COMMON /ANGL/ SALP(300)	WW	8	
10		COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	ww	9 10	
11		1CON(10),NPCON	ww	11	
12		COMMON /DATAJ/ S.B.XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ	ww	12	
13		1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND	ww	13	
14 15		DIMENSION CM(NR,1), CW(NW,1), CAB(1), SAB(1) Equivalence (CAB,ALP), (SAB,BET)	WW	14	
16	с	SET SOURCE SEGMENT PARAMETERS	WW .	15	
17	-	S=SI(J)	ww ww	16 17	
18		8=8I(J)	ww	18	
19		(L) X=LX	WW	19	
20		(L)Y=LY	ww	20	
21		ZJ=2(J)	ww	21	
22 23		CABJ=CAB(J) SABJ=SAB(J)	WW	22	
24		SALPJ=SALP(J)	ww	23 24	
25		IF (IEXK.EQ.0) GO TO 16	ww	25	
26	С	DECIDE WETHER EXT. T.W. APPROX. CAN BE USED	ww	26	
27		IPR=ICON1(J)	ww	27	
28		IF (IPR) 1,6,2	ww	28	
29	1	IPR=-IPR	WW	29	
30 31		IF (-ICON1(IPR).NE.J) GO TO 7 GO TO 4	WW	30	
32	2	IF (IPR.NE.J) GO TO 3	ww ww	31 32	
33	-	IF (CABJ+CABJ+SABJ+SABJ.GT.1.E-8) GO TO 7	ww	33	
34		GO TO 5	WW .	34	
35		IF (ICON2(IPR).NE.J) GO TO 7	ww	35	
36	4	XI=ABS(CABJ*CA8(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))	WW	36	
37 38		IF (XI.LT.0.999999) GO TO 7 IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 7	WW	37	
39	5	$IF (ABS(BI(IFR)/B^{-1}), GI, I, E^{-6}) GO + 0 / IND1=0$	ww ww	38 39	
40	Ŭ.	GO TO B	ww	40	
41	6	IND1=1	ww	41	
42		GO TO 8	ww	42	
43		IND1=2	ww	43	
44	8	IPR=ICON2(J)	WW	44	
45 46	a	IF (IPR) 9,14,10 IPR=-IPR	ww ww	45 46	
47	5	IF (-ICON2(IPR).NE.J) GO TO 15	ww	47	
48		GO TO 12	ww	48	
49	10	IF (IPR.NE.J) GO TO 11	ww	49	
50		IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 15	ww	50	
51			WW	51	
	11 12	IF (ICON1(IPR).NE.J) GO TO 15 XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))	ww ww	52 53	
53 54	12	IF (XI.LT.0.999999) GO TO 15	WW	53 54	
55		IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 15	ww	55	
	13	IND2=0	ww	56	
57		GO TO 16	ww	57	
	14	IND2=1	WW	58	
59	16	GO TO 16 TND2-2	ww ww	59 60	
	15 16	IND2=2 CONTINUE	ww	61	
62			ww	62	
63		OBSERVATION LOOP	ww	63	
64	с		ww	64	

65		IPR=0	ww	65
66		DO 23 I=I1,I2	ww	66
67		IPR=IPR+1	ww	67
68			ww	68
69		XI=X(I)	ww	69
70		YI=Y(I)	WW	70
71		ZI=Z(I)	WW	71
72		AI=8I(I)	WW	72
73		CABI=CAB(I)	ww	73
74		SABI=SAB(I)	WW	74
75		SALPI=SALP(I)	ww	75
76		CALL EFLD (XI,YI,ZI,AI,IJ)	ww	76
77		ETK=EXK+CABI+EYK+SABI+EZK+SALPI	ww	77
78		ETS=EXS*CABI+EYS*SABI+EZS*SALPI	ww	78
79		ETC=EXC*CABI+EYC*SABI+EZC*SALPI	ww	79
80	С		ww	80
81	С	FILL MATRIX ELEMENTS. ELEMENT LOCATIONS DETERMINED BY CONNECTION	ww	81
82	С	DATA.	ww	82
83	С		ww	83
84		IF (ITRP.NE.O) GO TO 18	ww	84
85	С	NORMAL FILL	ww	85
86		DO 17 IJ=1, JSNO	ww	86
87		JX=JCO(IJ)	ww	87
88	17	CM(IPR,JX)=CM(IPR,JX)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	ww	88
89		GO TO 23	ww	89
90	18	IF (ITRP.EQ.2) GO TO 20	ww	90
91	С	TRANSPOSED FILL	ww	91
92		DO 19 IJ=1.JSNO	ww	92
93		JX=JCO(IJ)	ww	93
94	19	CM(JX, IPR)=CM(JX, IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)		94
95		GO TO 23	ww	95
96	С	TRANS. FILL FOR C(WW) - TEST FOR ELEMENTS FOR D(WW)PRIME. (=CW)	ww	96
97		DO 22 IJ=1.JSNO	ww	97
98		JX=JCO(IJ)	WW	98
99		IF (JX.GT.NR) GO TO 21	ww	99
100		CM(JX,IPR)=CM(JX,IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)		100
101		GO TO 22		101
102	21	JX=JX-NR		102
103		CW(JX,IPR)=CW(JX,IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)		103
104	22	CONTINUE		104
105		CONTINUE		105
106		RETURN		105
107		END		107-
/			****	107-

CONECT

PURPOSE

To locate segment ends that contact each other or contact the center of a surface patch.

METHOD

The ends of each segment are identified as end 1 and end 2, defined during geometry input. The connection data for segment I is stored in array variables ICON1 (I) for end 1 and ICON2 (I) for end 2.

Four conditions are possible at each segment end: (1) no connection (a free end), (2) connection to one or more other segments, (3) connection to a ground plane, or (4) connection to a surface modeled with patches. These conditions are indicated in the following way for end 1 of segment I:

- (1) no connection $\ldots \ldots \ldots$ ICON1 (I) = 0
- (3) connection to a ground plane ICON1 (I). = I

In case 2, if segment J has the same reference direction as segment I (end 2 of segment J connected to end 1 of segment I), the sign is positive. For opposed reference directions (end 1 to end 1) the sign is negative. If several segments connect to end 1 of segment I, then J is the number of the next connected segment in sequence.

If segment I connects to patch K, the segment end must coincide with the patch center. Patch K is then divided into four patches numbered K through K + 3 by a call to subroutine SUBPH.

The connection data is illustrated in the following listing for the six segments in the structure in figure 3.

ICON1 (I)	ĩ	ICON2	(I)
10000 + К	1	2	
1	2	3	
4	3	0	
0	4	- 5	
0	5	6	
2	6	0	

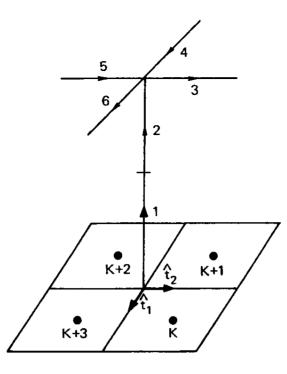


Figure 3. Structure for Illustrating Segment Connection Data.

Connections between patches are not checked, since, except where a wire connects to a surface, the current expansion function on a patch does not extend beyond that patch.

CODING

- CN16 CN27 Initialize and adjust symmetry conditions if necessary when ground is present.
- CN40 CN46 Check whether end 1 of segment I is below ground plane (error) or contacting ground plane. If the separation of the segment end and the ground is less than SMIN multiplied by the segment length, ICON1 is set to I and the z coordinate of the segment end is set to exactly zero.
- CN49 CN60 Check other segments from I + 1 through N and then 1 through I - 1, until a connected end is found. The separation of segment ends is determined by the sum of the separations in x, y, and z to save time.

- CN95 CN126 Search for segments connected to patches. Only new patches (not NGF) are checked. If a connection is found the patch is divided into four patches at its present location in the data arrays and patches following it are shifted up by three locations. This is done by calling SUBPH, an entry point of subroutine PATCH.
- CN129 CN162 Search for new segments connected to NGF patches. If a connection is found four patches, covering the area of the original patch, are added to the end of the data arrays by calling SUBPH. The original patch retains its location but the z coordinate at its center is changed to 10000.
- CN182 CN258 The loop through 44 locates segments connected to junctions.
- CN183 CN190 Parameters are initialized to find all segments connected to first end of segment J.
- CN191 CN215 Connected segments are located. If the number of any connected segment is less than J the loop is exited at CN200. Thus each junction is processed only once.
- CN216 CN230 The connected ends are set to the average of their previous values to ensure that they have identical values.
- CN232 CN244 If the junction includes new segments (NSFLG = 1) and IX is a NGF segment an equation number, NSCON, is assigned for the modified basis function of segment IX. The equation number is stored in array ICONX and the segment number is stored in ISCON.
- CN245 CN247 Segment numbers are printed for junctions of three or more segments.
- CN248 CN257 The loop is initialized for the second end of segment J and the steps from CN191 on are repeated.
- CN262 CN275 Equation numbers for modified basis functions are assigned for old segments that connect to new patches.

SYMBOL DICTIONARY

IGND

I to adjust symmetry for ground and set ICON (I) = I; -l to adjust symmetry only; 0 for no ground

-73-

CONECT

JMAX	-	maximum number of segments connected to a junction
NPMAX	=	maximum number of NGF patches connecting to new
		segments
NSFLG	=	l if the junction includes any new segments when NGF
		is in use
NSMAX	=	maximum number of NGF segments connecting to new
		segments
SEP	=	approximate separation of segment ends
SLEN	-	maximum separation allowed for connection
SMIN	-	maximum separation as a fraction of segment length
XII)		
¥11	=	coordinates of end 1 of segment
211)		
XI 2		
Y [2]	=	coordinates of end 2 of segment
ZI2)		
xs		
¥S}	3	coordinates of patch center
zs)		

CONSTANT

1.8-3

maximum separation tolerance for connected segments as fraction of segment length.

CONECT

1 2 0	SUBROUTINE CONECT (IGND)	CN	1
3 (CN	2
4 (BY SEARCHING FOR SEGMENT ENDS THAT ARE IN CONTACT.	CN CN	3
5 (CN	4 5
6	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	CNI.	6
7 8	1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(2300), WLAM, IPSYM	CN	7
9		ĊN	8
10	COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP 1CON(10), NPCON		9
11	DIMENSION X2(1), Y2(1), Z2(1)	CN CN	10 11
12	EQUIVALENCE (X2,SI), (Y2,ALP), (Z2,BET)	CN	12
13	DATA JMAX/30/,SMIN/1.E-3/,NSMAX/50/,NPMAX/10/	CN	13
14 15	NSCON=0 NPCON=0	CN	14
16	IF (IGND.EQ.0) GO TO 3	CN	15
17	PRINT 54	CN	1.6
18	IF (IGND.GT.O) PRINT 55	CN CN	17 18
19	IF (IPSYM.NE.2) GO TO 1	CN	19
20	NP=2*NP	CN	20
21 22 1	MP=2*MP	CN	21
23	IF (IABS(IPSYM).LE.2) GO TO 2 NP=N	CN	22
24	MP=M	CN	23
25 2	IF (NP.GT.N) STOP	CN CN	24 25
26	IF (NP.EQ.N.AND.MP.EQ.M) IPSYM=0	CN	26
27 3	(·····································	CN	27
28 29	DO 15 I=1,N	ÇN	28
30	ICONX(I)=0 XI1=X(I)	CN	29
31	YI1=Y(I)	CN CN	30
32	ZI1=Z(I)	CN	31 32
33	XI2=X2(I)	CN	33
34	YI2=Y2(I)	CN	34
35 36	ZI2=Z2(I)	CN	35
37 0	SLEN=SQRT((XI2-XI1)**2+(YI2-YI1)**2+(ZI2-ZI1)**2)*SMIN	CN	36
38 C		CN CN	37 38
39 C		CN	39
40		CN	40
41		CN	41
42 43	STOD	CN	42
44 4		CN	43
45		CN CN	44 45
46	Z(I)=0.	CŅ	46
47		CN	47
48 5 49		CN	48
50		CN CN	49 50
51		CN	51
52		CN	52
53		CN	53
54		CN	54
55 56 6		CN	55
57		CN CN	56 57
58		CN	58
59	GO TO 8	CN	59
60 7		CN	60
61 62		CN	61
63 C		CN CN	62 63
64 C		ÇN	64

65 C		CN 65
66 8	IF (IGND.LT.1) GO TO 12	CN 66
679	IF (ZI2.GTSLEN) GO TO 10	CN 67
68	PRINT 56, I	CN 68
69	STOP	CN 69
70 10	IF (ZI2.GT.SLEN) GO TO 12	CN 70
71	IF (ICON1(I).NE.I) GO TO 11	CN 71
72	PRINT 57, I	CN 72
73	STOP	CN 73
74 11	ICON2(I)=I	CN 74
75	$Z_2(1) = 0.$	CN 75
76	GO TO 15	CN 76
77 12 78	IC=I DO 14 J=2,N	CN 77
79	IC=IC+1	CN 78
80	IF (IC.GT.N) IC=1	CN 79
81	SEP=ABS(XI2-X(IC))+ABS(YI2-Y(IC))+ABS(ZI2-Z(IC))	CN 80
82	IF (SEP.GT.SLEN) GO TO 13	CN 81
83	ICON2(I)=IC	CN 82
84	GO TO 15	CN 83
85 13	SEP=ABS(XI2-X2(IC))+ABS(YI2-Y2(IC))+ABS(ZI2-Z2(IC))	CN 84 CN 85
86	IF (SEP.GT.SLEN) GO TO 14	
87	ICON2(I)=-IC	CN 86 CN 87
88	GO TO 15	CN 88
89 14	CONTINUE	CN 89
90	IF (I.LT.N2.AND.ICON2(I).GT.10000) GO TO 15	CN 90
91	ICON2(I)=0	CN 91
92 15	CONTINUE	CN 92
93	IF (M.EQ.0) GO TO 26	CN 93
94 C	FIND WIRE-SURFACE CONNECTIONS FOR NEW PATCHES	CN 94
95	IX=LD+1-M1	CN 95
96	I=M2	CN 96
97 16	IF (I.GT.M) GO TO 20	CN 97
98	IX=IX-1	CN 98
99	XS=X(IX)	CN 99
100	YS=Y(IX)	CN 100
101	ZS=Z(IX)	CN 101
102	DO 18 ISEG=1.N	CN 102
103	XI1=X(ISEG)	CN 103
104	YI1=Y(ISEG)	CN 104
105	ZI1=Z(ISEG)	CN 105
106	XI2=X2(ISEG)	CN 106
107	YI2=Y2(ISEG)	CN 107
108		CN 108
109 110 C	SLEN=(ABS(XI2-XI1)+ABS(YI2-YI1)+ABS(ZI2-ZI1))*SMIN	CN 109
111	FOR FIRST END OF SEGMENT	CN 110
112	SEP=ABS(XI1-XS)+ABS(YI1-YS)+ABS(ZI1-ZS) IF (SEP.GT.SLEN) GO TO 17	CN 111
113 C	CONNECTION - DIVIDE PATCH INTO 4 PATCHES AT PRESENT ARRAY LOC.	CN 112
114	ICONICISION - DIVIDE PATCH INTO 4 PATCHES AT PRESENT ARRAY LOC.	CN 113
115	IC=0	CN 114
116	CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)	CN 115
117	GO-TO 19	CN 116 CN 117
118 17	SEP=ABS(XI2-XS)+ABS(YI2-YS)+ABS(ZI2-ZS)	CN 118
119	IF (SEP.GT.SLEN) GO TO 18	CN 119
120	ICON2(ISEG)=10000+I	CN 120
121	IC=0	CN 121
122	CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)	CN 122
123	GO TO 19	CN 123
124 18	CONTINUE	CN 124
125 19	I=I+1	CN 125
126	GO TO 16	CN 126
127 C	REPEAT SEARCH FOR NEW SEGMENTS CONNECTED TO NGF PATCHES.	CN 127
128 20	IF (M1.EQ.O.OR.N2.GT.N) GO TO 26	CN 128

.

		CONECT
129	IX=LD+1	CN 129
130		CN 130
131 21 132	IF (I.GT.M1) GO TO 25	CN 131
133	IX=IX-1 XS=X(IX)	CN 132
134	YS=Y(IX)	CN 133
135	ZS=Z(IX)	CN 134
136	DO 23 ISEG=N2,N	CN 135 CN 136
137	XI1=X(ISEG)	CN 137
138	YI1=Y(ISEG)	CN 138
139	ZI1=Z(ISEG)	CN 139
140	XI2=X2(ISEG)	CN 140
141	YI2=Y2(ISEG)	CN 141
142 143		CN 142
143	SLEN=(ABS(XI2-XI1)+ABS(YI2-YI1)+ABS(ZI2-ZI1))*SMIN SEP≃ABS(XI1-XS)+ABS(YI1-YS)+ABS(ZI1-ZS)	CN 143
145	IF (SEP.GT.SLEN) GO TO 22	CN 144
146	ICON1(ISEG)=10001+M	CN 145 CN 146
147	IC=1	CN 147
148	NPCON=NPCON+1	CN 148
149	IPCON(NPCON)=I	CN 149
150	CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)	CN 150
151	GO TO 24	CN 151
152 22	SEP=ABS(XI2-XS)+ABS(YI2-YS)+ABS(ZI2-ZS)	CN 152
153	IF (SEP.GT.SLEN) GO TO 23	CN 153
154	ICON2(ISEG)=10001+M	CN 154
155 156	IC=1 NPCON=NPCON+1	CN 155
157	IPCON(NPCON)=I	CN 156
158	CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)	CN 157 CN 158
159	GO TO 24	CN 159
160 23	CONTINUE	CN 160
161 24	I≃I+1	CN 161
162	GO TO 21	CN 162
163 25	IF (NPCON.LE.NPMAX) GO TO 26	CN 163
164	PRINT 62, NPMAX	CN 164
165	STOP	CN 165
166 26	PRINT 58, N,NP, IPSYM	CN 166
167 168	IF (M.GT.O) PRINT 61, M,MP ISEG=(N+M)/(NP+MP)	CN 167
169	IF (ISEG.EQ.1) GO TO 30	CN 168 CN 169
170	IF (IPSYM) 28,27,29	CN 170
171 27	STOP	CN 171
172 28	PRINT 59, ISEG	CN 172
173	CO TO 30	CN 173
174 29	IC=ISEG/2	CN 174
175	IF (ISEG.EQ.8) IC=3	CN 175
176	PRINT 60, IC	CN 176
177 30	IF (N.EQ.0) GO TO 48	CN 177
178 179	PRINT 50 ISEG=0	CN 178
179 180 C	ADJUST CONNECTED SEG. ENDS TO EXACTLY COINCIDE. PRINT JUNCTIONS	CN 179 CN 180
181 C	OF 3 OR MORE SEG. ALSO FIND OLD SEG, CONNECTING TO NEW SEG.	CN 181
182	DO 44 J=1,N	CN 182
183	IEND=-1	CN 183
184	JEND=-1	CN 184
185	IX=ICON1(J)	CN 185
186	IC=1	CN 186
187	L = (1)00L	CN 187
188	XA=X(J) XA=Y(J)	CN 188
189 190	YA=Y(J) ZA=Z(J)	CN 189 CN 190
190	IF (IX.EQ.0) GO TO 43	CN 191
191 51	IF (IX.EQ.J) GO TO 43	CN 192

CONECT

193	IF (IX.GT.10000) GO TO 43	• • • • • •
194	NSFLG=0	CN 193
195 32	IF (IX) 33,49,34	CN 194
196 53	IX=-TX	CN 195
197	GO TO 35	CN 196
198 34	JEND=-JEND	CN 197
199-35	IF (IX.EQ.J) GO TO 3/	CN 198
200	IF (IX.LT.J) GO TO 43	CN 199 CN 200
201	IC=IC+1	CN 200 CN 201
202	IF (IC.GT.JMAX) GO TO 49	CN 202
203	JCO(IC)=IX•JEND	CN 203
204	IF (IX.GT.N1) NSFLG=1	CN 204
205	IF (JEND.EQ.1) GO TO 36	CN 205
206 207	XA=XA+X(IX)	CN 206
208	YA=YA+Y(IX)	CN 207
200	ZA=ZA+Z(IX)	CN 208
210	IX=ICON1(IX) GO TO 32	CN 209
211 36	XA=XA+X2(IX)	CN 210
212	YA=YA+Y2(IX)	CN 211
213	ZA=ZA+Z2(IX)	CN 212
214	IX = ICON2(IX)	CN 213
215	GO TO 32	CN 214
216 37	SEP=IC	CN 215
217	XA=XA/SEP	CN 216
218	YA=YA/SEP	CN 217
219	ZA=ZA/SEP	CN 218
220	DO 39 I=1,IC	CN 219
221	IX=JCO(I)	CN 220
222	IF (IX.GT.0) GO TO 38	CN 221
223	IX = -IX	CN 222 CN 223
224	X(IX)=XA	CN 223
225	Y(IX)=YA	CN 224 CN 225
226	Z(IX) = ZA	CN 225 CN 226
227	GO TO 39	CN 227
228 38	X2(IX)=XA	CN 228
229	Y2(IX)=YA	CN 229
230	Z2(IX)=ZA	CN 230
231 39	CONTINUE	CN 231
. 232	IF (N1.EQ.0) GO TO 42	CN 232
233	IF (NSFLG.EQ.O) GO IO 42	CN 233
234	DO 41 I=1,IC	UN 234
235	IX=IABS(JCO(I))	CN 235
236	IF (IX.GT.N1) GO TO 41	CN 236
237	IF (ICONX(IX).NE.0) GO TO 41	CN 237
238	NSCON=NSCON+1	CN 238
239 240	IF (NSCON.LE.NSMAX) GO TO 40	CN 239
241	PRINT 62, NSMAX STOP	CN 240
242 40	ISCON(NSCON)=IX	CN 241
243	LCONX(IX)=NSCON	CN 242
244 41	CONTINUE	CN 243
245 42	IF (IC.LT.3) GO TO 43	CN 244
245	ISEG=ISEG+1	CN 245
247	PRINT 51, ISEG, (JCO(I), I=1, IC)	CN 246
248 43	IF (IEND.EQ.1) GO TO 44	CN 247
249	IEND=1	CN 248
250	JEND=1	CN 249 CN 250
251	IX=ICON2(J)	CN 250 CN 251
252	IC=1	CN 252
253	JCO(1) = J	CN 253
254	XA=X2(J)	CN 254
255	YA=Y2(J)	CN 255
256	/A=Z2(J)	CN 256

257					CO
	44	GO TO 31	CN	257	
259		CONTINUE		258	
260		IF (ISEG.EQ.0) PRINT 52		259	
261		[F (N1.EQ.O.OR.M1.EQ.M) GO TO 48		260	
262		FIND OLD SEGMENTS THAT CONNECT TO NEW PATCHES		251	
262		00 47 J=1,N1		262	
264			CN	263	
265		IF (IX.LT.10000) GO TO 45	CN	264	
266		IX=IX-10000 IF (IX.GT.M1) GO TO 46	CN	265	
267		IX=ICON2(J)	CN	266	
268		IF (IX.LT.10000) GO TO 47	CN	267	
269		IX=IX-10000	CN	268	
270		IF (IX.LT.M2) GO TO 47	ĊN	269	
271		IF (ICONX(J).NE.0) GO TO 47	CN	270	
272		NSCON=NSCON+1	CN	271	
273		ISCON(NSCON)=J	CN	272	
274		ICONX(J)=NSCON		273	
275		CONTINUE		274	
276		CONTINUE		275	
277		RETURN		276	
278	49	PRINT 53, IX		277	
279		STOP		278	
280	с			279	
281	50	FORMAT (//.9X.27H- MULTIPLE WIRE JUNCTIONS/.1X.8HJUNCTION.4X.36	CN	280	
282		1HSEGMENTS (- FOR END 1, + FOR END 2))			
283	51	FORMAT (1X, I5, 5X, 20I5, /, (11X, 20I5))		282	
284	52	FORMAT (2X, 4HNONE)		283	
285	53	FORMAT (47H CONNECT - SEGMENT CONNECTION ERROR FOR SEGMENT, IS)		284	
286	54	FORMAT (/, 3X, 23HGROUND PLANE SPECIFIED.)		285 286	
287	55	FORMAT (/.3X.46HWHERE WIRE ENDS TOUCH GROUND, CURRENT WILL BE ,38H	CN	200	
288		IINTERPOLATED TO IMAGE IN GROUND PLANE /)		288	
289	56	FORMAT (30H GEOMETRY DATA ERROR SEGMENT, 15, 21H EXTENDS BELOW GRO	CN	280	
290		1UND)		290	
291	57	FORMAT (29H GEOMETRY DATA ERROR-SEGMENT, 15, 16H LIES IN GROUND ,6H	CN	290	
292		1PLANE.)		292	
293	58	FORMAT (/, 3X, 20HTOTAL SEGMENTS USED=, 15, 5X, 12HNO, SEG. IN , 17HA SY	CN	203	
294		1MMETRIC CELL=, I5, 5X, 14HSYMMETRY FLAG=, I3)		294	
295		FORMAT (14H STRUCTURE HAS, I4, 25H FOLD ROTATIONAL SYMMETRY./)		295	
296		FORMAT (14H STRUCTURE HAS, 12, 19H PLANES OF SYMMETRY, /)	CN	296	
297	61	FORMAT (3X,19HTOTAL PATCHES USED=, 15,6X,32HNO. PATCHES IN A SYMMET	CN	297	
298		1RIC CELL=, IS)	CN	298	
299	62	FORMAT (82H ERROR - NO. NEW SEGMENTS CONNECTED TO N.G.F. SEGMENTSO	CN	299	
300		1R PATCHES EXCEEDS LIMIT OF, 15)		300	
301		END	CN	301-	-

CONECT

COUPLE

COUPLE

PURPOSE

To compute the maximum coupling between pairs of segments.

METHOD

If a coupling calculation has been requested (CP card) subroutine COUPLE is called each time that the current is computed for a new excitation. The code from CP10 to CP12 checks that the excitation is a single applied-field voltage source on the segment specified in NCTAG and NCSEG. If the excitation is correct the input admittance and mutual admittances to all other segments specified in NCTAG and NCSEG are stored in Y11A and Y12A from CP13 to CP22.

When all segments have been excited (ICOUP = NCOUP) the second part of the code, from CP24 to CP58 is executed to evaluate the equations in Section V.6 of Part I.

SYMBOL DICTIONARY

С = L (see Part I, Section V.6) = array of values of current at the centers of segments CUR = 10 log(G_{MAX}) DBC $GMAX = G_{MAX}$ ISG1 = segment number ISG2 = segment number = index of Y_{12} in array Y12A JL J 2 = index of Y₂₁ in array Y12A К = segment number R HO = ρ WLAM = wavelength = Y₁₁ YLL $= (Y_{12} + Y_{21})/2$ Y12 $= Y_{22}$ ¥22 YIN $= Y_{TN}$ = Y L ΥL Z IN = 1/YIN $= 1/Y_{L}$ ΖL

COUPLE

				00
1 2	с	SUBROUTINE COUPLE (CUR,WLAM)	СР СР	1 2
	C	COUPLE COMPUTES THE MAXIMUM COUPLING BETWEEN PAIRS OF SEGMENTS.	СР	2 3
	С		СР	4
5 6		COMPLEX Y11A, Y12A, CUR, Y11, Y12, Y22, YL, YIN, ZL, ZIN, RHO, VQD, VSANT, VQDS		5
7		COMMON /YPARM/ NCOUP, ICOUP, NCTAG(5), NCSEG(5), Y11A(5), Y12A(20)	СР	6
8		COMMON /VSORC/ VQD(30),VSANT(30),VQDS(30),IVQD(30),ISANT(30),IQDS(130),NVQD,NSANT,NQDS		7
9		DIMENSION CUR(1)	CP	8
10		IF (NSANT.NE.1.OR.NVQD.NE.0) RETURN	CP	9
11		J=ISEGNO(NCTAG(ICOUP+1), NCSEG(ICOUP+1))	СР СР	10 11
12		IF (J.NE.ISANT(1)) RETURN	CP	12
13		ICOUP=ICOUP+1	CP	13
14		ZIN=VSANT(1)	CP	14
15		Y11A(ICOUP)=CUR(J)*WLAM/ZIN	СР	15
16		L1=(ICOUP-1)*(NCOUP-1)	СР	16
17		DO 1 I=1,NCOUP	СР	17
18		IF (I.EQ.ICOUP) GO TO 1	СР	18
19		K=ISEGNO(NCTAG(I),NCSEG(I))	СР	19
20 21		L1=L1+1 Y12A(L1)=CUR(K)•WLAM/ZIN	CP	20
22	1	CONTINUE	CP	21
23		IF (ICOUP.LT.NCOUP) RETURN	CP CP	22 23
24		PRINT 6	CP	24
25		NPM1=NCOUP-1	CP	25
26		DO 5 I=1,NPM1	CP	26
27		ITT1=NCTAG(I)	CP	27
28		ITS1=NCSEG(I)	СР	28
29		ISG1=ISEGNO(ITT1,ITS1)	СР	29
30			СР	30
31 32			CP	31
33		ITT2=NCTAG(J) ITS2=NCSEG(J)	СР СР	32 33
34		ISG2=ISEGNO(ITT2,ITS2)	CP	33 34
35		J1=J+(I-1)*NPM1-1	CP	35
36		J2=I+(J-1)*NPM1	CP	36
37		Y11=Y11A(I)	CP	37
38		Y22=Y11A(J)	СР	38
39		Y12=.5*(Y12A(J1)+Y12A(J2))	СР	39
40		YIN=Y12*Y12	CP	40
41 42		DBC=CAÐS(YIN) C=DBC/(2.*REAL(Y11)*REAL(Y22)-REAL(YIN))	CP	41
43		IF (C.LT.00R.C.GT.1.) GO TO 4	CP CP	42 43
44		IF (C.LT01) GO TO 2	CP	43
45		GMAX=(1SQRT(1C*C))/C	CP	45
46		GO TO 3	CP	46
47	2	GMAX=.5*(C+.25*C*C*C)	СР	47
48		RHO=GMAX*CONJG(YIN)/DBC	СР	48
49		YL=((1RHO)/(1.+RHO)+1.)*REAL(Y22)-Y22	CP	49
50			CP	50
51 52		YIN=Y11-YIN/(Y22+YL) ZIN=1./YIN	CP CP	51 52
53		DBC=DB10(GMAX)	CP	53
54		PRINT 7, ITT1, ITS1, ISG1, ITT2, ITS2, ISG2, DBC, ZL, ZIN	CP	54
55		GO TO 5	CP	55
56	4	PRINT 8, ITT1,ITS1,ISG1,ITT2,ITS2,ISG2,C	СР	56
57	5	CONTINUE	СР	57
58		RETURN	СР	58
	C		CP	59
60 61	6	FORMAT $(///, 36X, 26H ISOLATION DATA, //, 5X, 24H - COUPLIN$		60
62		1G BETWEEN,8X,7HMAXIMUM,15X,32H FOR MAXIMUM COUPLING 2,/,12X,4HSEG.,14X,4HSEG.,3X,8HCOUPLING,4X,25HLOAD IMPEDANCE (2ND S		61 62
63		3EG.),7X,15HINPUT IMPEDANCE,/,2X,8HTAG/SEG.,3X,3HNO.,4X,8HTAG/SEG.,		63
64		43X, 3HNO., 6X, 4H(DB), 8X, 4HREAL, 9X, 5HIMAG., 9X, 4HREAL, 9X, 5HIMAG.)	CP	64

COUPLE

657 668 67	FORMAT (2(1X, I4, 1X, I4, 1X, I5, 2X), F9.3, 2X, 2(2X, E12.5, 1X, E12.5)) FORMAT (2(1X, I4, 1X, I4, 1X, I5, 2X)45H**ERROR** COUPLING IS NOT BETWEE	CP	65 66
68	1N 0 AND 1. (=,E12.5,1H)) END	СР СР	67 68-
		•	

PURPOSE

To read structure input data and set segment and patch data.

METHOD

_

The main READ statement is at DA35. The READ statement at DA65 is for the continuation of wire data (GC card following GW), and the READ at DA133 is for the continuation of surface patch data (SC following SP or SM).

The first input parameter GM determines the function of the card as indicated in the following table:

GM 	GØ TØ	FUNCTION
GA	8	define wire arc
GC	6	continuation of wire data
GE	29	end of geometry data
GF	27	read NGF file
GM	26	rotate or translate structure
GR	19	rotate about Z axis (symmetry)
GS	21	scale structure
GW	3	define straight wire
GX	18	reflect in coordinate planes (symmetry)
SC	10	continuation of patch data
SM	13	define multiple surface patches
SP	9	define surface patch

The functions of the other input parameters depend on the type of data card and can be determined from the data card descriptions in Part III of this manual.

Subroutines are called to perform many of the operation's requested by the data cards. Coding in DATAGN performs other operations, prints information and checks for input errors. After a GE card is read subroutine CONECT is called at DA211 to find electrical connections of segments. Segment and patch data is printed from DA217 to DA256. Line DA241 tests for segments of zero length ($<10^{-20}$) or zero radius ($<10^{-101}$).

-83-

SYMBOL DICTIONARY

Variables have multiple uses which depend on the type of input card being processed.

r

			DA
1 2 C	SUBROUTINE DATAGN	DA	1
3 C	DATAGN IS THE MAIN ROUTINE FOR INPUT OF GEOMETRY DATA.	DA	2
4 C		DA DA	3 4
5	INTEGER GM, ATST	D 4	5
6	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	D 4	6
7 8	-1, $BI(300)$, $ALP(300)$, $BEI(300)$, $ICON1(300)$, $ICON2(300)$, $TTAG(300)$, $TCONV(1)$	DA	7
9	2300),WLAM, IPSYM COMMON /ANGL/ SALP(300)	DA	8
10	DIMENSION X2(1), Y2(1), Z2(1), T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y	DA	9
11	1(1), T2Z(1), ATST(12), IFX(2), IFY(2), IFZ(2), CAB(1), SAB(1), IPT	DA	10
12	$2(4)$ $(1)^{1} (1)^{$		11
13	EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BEI), (T2X,ICON1), (T2Y, TCON	DA DA	12 13
14	12), (T2Z,ITAG), (X2,SI), (Y2,ALP), (Z2,BET), (CAB,ALP) (SAB BET)	DA.	14
15	DATA ATST/2HGW,2HGX,2HGR,2HGS,2HGE,2HGM,2HSP,2HSM,2HGF,2HGA,2HSC,2	DA	15
16	1HGC/	DA	16
17 18	DATA IFX/1H .1HX/.IFY/1H .1HY/.IFZ/1H .1HZ/	DA	17
19	DATA TA/0.01745329252/,TD/57.29577951/,IPT/1HP,1HR,1HT,1HQ/ IPSYM=0	DA	18
20	NWIRE=0	DA	19
21	N=0	DA DA	20
22	NP=0	DA	21 22
23	M=0	DA	23
24	MP=0	DA	24
25	N1=0	DA	25
26	N2=1	DA	26
27 28	M1=0 M2≃1	DA	27
29	ISCT=0	DA	28
30	IPHD=0	DA DA	29 30
31 C		DA	31
32 C	READ GEOMETRY DATA CARD AND BRANCH TO SECTION FOR OPERATION	DA	32
33 C	REQUESTED	DA	33
34 C		DA	34
35 1	READ (5,42) GM, ITG, NS, XW1, YW1, ZW1, XW2, YW2, ZW2, RAD	ÐA	35
36	IF (N+M.GT.LD) GO TO 37	DA	36
37 38	IF (GM.EQ.AIST(9)) GO TO 27 IF (IPHD.EQ.1) GO TO 2	DA	37
39	PRINT 40	DA DA	38 39
40	PRINT 41	DA	40
41	IPHD=1	DA	41
42 2	IF (GM.EQ.ATST(11)) GO TO 10	ÐA	42
43	ISCT=0	DA	43
44	IF (GM.EQ.ATST(1)) GO TO 3	DA	44
45	IF (GM.EQ.ATST(2)) GO TO 18	DA	45
46 47	IF (GM.EQ.ATST(3)) GO TO 19 IF (GM.EQ.ATST(4)) GO TO 21	DA	46
48	IF (GM.EQ.ATST(7)) GO TO 9	DA DA	47 48
49	IF (GM.EQ.ATST(B)) GO TO 13	DA	49
50	IF (GM.EQ.ATST(5)) GO TO 29	DA	50
51	IF (GM.EQ.ATST(6)) GO TO 26	DA	51
52	IF (GM.EQ.ATST(10)) GO TO 8	DA	52
53	GO TO 36	DA	53
54 C	OFNERATE CEONENT NATA FOR CERATORS WIRE	DA	54
55 C 56 C	GENERATE SEGMENT DATA FOR STRAIGHT WIRE.	DA DA	55 56
57 3	NWIRE=NWIRE+1	DA	57
58	I1=N+1	DA	58
59	I2=N+NS	DA	59
60	PRINT 43, NWIRE,XW1,YW1,ZW1,XW2,YW2,ZW2,RAD,NS,I1,I2,ITG	DA	60
61	IF (RAD.EQ.0) GO TO 4	ÐA	61
62	XS1=1.	DA	62
63 64	YS1=1.	DA	63
U 4	GO TO 7	DA	64

65 4	READ (5 42) CM TV TV VCL VCL TO	
66	READ (5,42) GM, IX, IY, XS1, YS1, ZS1	DA 65
67 5	IF (GM.EQ.ATST(12)) GO TO 6	DA 66
	PRINT 48	DA 67
68	STOP	
69 6	PRINT 61, XS1, YS1, ZS1	DA 68
70	IF (YS1.EQ.O.OR.ZS1.EQ.O) GO TO 5	DA 69
71	RAD=YS1	- DA 70
72	YS1=(ZS1/YS1)**(1./(NS-1.))	DA 71
737	CALL WTRF (XW1 XW1 XW2 XW2 XW2 RUD DID NET	DA 72
74	CALL WIRE (XW1,YW1,ZW1,XW2,YW2,ZW2,RAD,XS1,YS1,NS,ITG) GO TO 1	DA 73
75 C		DA 74
		DA 75
76 C	GENERATE SEGMENT DATA FOR WIRE ARC	DA 76
77 C		DA 70 DA 77
788	NWIRE=NWIRE+1	
79	I1=N+1	DA 78
80	I2=N+NS	DA 79
81	PRINT 38, NWIRE, XW1, YW1, ZW1, XW2, NS, I1, I2, ITG	DA 80
82	CALL ARC (ITG,NS,XW1,YW1,ZW1,XW2)	DA 81
83	GO TO 1	DA 82
		DA 83
84 C		DA 84
85 C	GENERATE SINGLE NEW PATCH	DA 85
86 C		
879	I1=M+1	
88	NS=NS+1	DA 87
89	IF (ITG.NE.O) GO TO 17	DA 88
90	PRINT 51, I1, IPT(NS), XW1, YW1, ZW1, XW2, YW2, ZW2	DA 89
91	IF (NS.EQ.2.OR.NS.EQ.4) ISCI=1	DA 90
92		DA 91
	IF (NS.GT.1) GO TO 14	DA 92
93	XW2=XW2 • TA	DA 93
94	YW2=YW2*TA	DA 94
95	GO TO 16	DA 95
96 10	IF (ISCT.EQ.0) GO TO 17	DA 96
97	I1=M+1	DA 97
98	NS=NS+1	DA 98
99	IF (ITG.NE.O) GO TO 17	=
100	IF (NS.NE.2.AND.NS.NE.4) GO TO 17	
101	XS1=X4	DA 100
102	YS1=Y4	DA 101
103	ZS1=Z4	DA 102
104	XS2=X3	DA 103
		DA 104
105	YS2=Y3	DA 105
106	ZS2=Z3	DA 106
107	X 3=XW1	DA 107
108	Y 3=YW1	DA 108
109	Z3=ZW1	DA 109
110	IF (NS.NE.4) GO TO 11	DA 109
111	X4=XW2	
112	Y 4=YW2	DA 111
113	Z4=ZW2	DA 112
114 11		DA 113
	XW1=XS1	DA 114
115	YW1=YS1	DA 115
116	ZW1=ZS1	DA 116
117	XW2=XS2	DA 117
118	YW2=Y52	DA 118
119	ZW2=ZS2	DA 119
120	IF (NS.EQ.4) GO TO 12	DA 120
121	X4=XW1+X3-XW2	DA 121
122	Y 4=YW1+Y 3-YW2	DA 121
123	Z4=ZW1+Z3-ZW2	DA 122
124 12	PRINT 51, II, IPT(NS), XW1, YW1, ZW1, XW2, YW2, ZW2	
125	PRINT 39, X3, Y3, Z3, X4, Y4, 74	DA 124
126	GO TO 16	DA 125
127 C		DA 126
127 C	GENERATE MULTIPLE-PATCH SURFACE	DA 127
	SCHENAL MOLITILE-FAILT JURFAUL	DA 128

400			DP
129			
130			129
131	PRINT 59. I1, IPT(2), XW1, YW1, ZW1, XW2, YW2, ZW2, ITG, NS		130
132	IF (IIG.LI.I.OK.NS.LI.I) GO TO 17		131
133	14 READ (5,42) GM, IX, IY, X3, Y3, Z3, X4, Y4, 74		132
134	IF (NS.NE.2.AND.ITG.LT.1) GO TO 15		133
135	X4=XW1+X3-XW2		134
136	Y4=YW1+Y3-YW2		135
137	Z4=ZW1+Z3-ZW2		136
138 1	15 PRINT 39, X3, Y3, Z3, X4, Y4, Z4		137
139	IF (GM.NE.ATST(11)) GO TO 17		138
140	6 CALL PATCH (ITG,NS,XW1,YW1,ZW1,XW2,YW2,ZW2,X3,Y3,Z3,X4,Y4,Z4)		139
141	GO TO 1		140
142			141
143	STOP	DA	142
144 (143
145 0		DA	144
146 (THE ALL OF A CALL OF A CAL	DA	145
147 1		DA	146
148		DA	147
140		DA	148
		DA	149
150	IY=IY-IX*10	DA	150
151	IF (IX, NE, O) $IX = 1$	DA	151
152	IF (IY.NE.O) IY=1	DA	152
153	IF (IZ.NE.O) IZ=1	DA	153
154	PRINT 44, IFX(IX+1), IFY(IY+1), IFZ(IZ+1), ITG		154
155	GO TO 20		155
156 1	9 PRINT 45 NS TTC		156
157	IX=-1		157
158 2	$(1) (\Delta I) REFLC (TY TY T7 TTC NS)$		158
159			159
160 C			160
161 C	SCALE STRUCTURE DIMENSIONS BY EXCLODE YOUR	DA	
162 C			162
163 2	1 TE $(N \mid T \mid N_2)$ CO TO DZ	DA	
164		DA	
165	¥/ T \ _ ¥ / T \ # YUU		
166			165
167		DA	
168		DA	
169		DA	
170	70/ T \ _ 70/ T \ 4 VW4	DA	
171 2		DA	
172 2		DA	
173		DA	
174		DA	
		DA	
175		DA	175
176		DA	176
177		DA	177
178	Y(I) = Y(I) * XW1	DA	178
179		DA	179
180 2		DA	180
181 2	•	DA	181
182		DA	182
183 C		DA	183
184 C	MOVE STRUCTURE OR REPRODUCE ORIGINAL STRUCTURE IN NEW POSITIONS.	DA	
185 C		DA	
186 2		DA	
187		DA	
188		DA	
189		DA	
190		DA	
191	01.01	DA	
192 C		DA	
		2.,	

.

193 C	READ NUMERICAL GREEN'S FUNCTION TAPE	
194 C		DA 193
195 27	IF (N+M.EQ.0) GO TO 28	DA 194
196	PRINT 52	DA 195
197	STOP	DA 196
198 28	CALL GFIL (ITG)	DA 197
199	NPSAV=NP	DA 198
200	MPSAV=MP	DA 199
201	IPSAV=IPSYM	DA 200
202	GO TO 1	DA 201
203 C		DA 202
204 C 205 C	TERMINATE STRUCTURE GEOMETRY INPUT.	DA 203
205 0		DA 204
200 29		DA 205
208	IF (IX.EQ.0) GO TO 30	DA 206 DA 207
209		DA 207
210		DA 200
211 30	IPSYM=0	DA 210
212	CALL CONECT (ITG)	DA 211
213	IF (IX.EQ.0) GO TO 31 NP=NPSAV	DA 212
214	MP=MPSAV	DA 213
215	IPSYM=IPSAV	DA 214
216 31	IF (N+M.GT.LD) GO TO 37	DA 215
217	IF (N.EQ.0) GO TO 33	DA 216
218	PRINI 53	DA 217
219	PRINT 54	DA 218
220	DO 32 I=1,N	DA 219
221	XW1=X2(I)-X(I)	DA 220
222	YW1 = Y2(I) - Y(I)	DA 221
223	ZW1 = Z2(I) - Z(I)	DA 222
224	X(I) = (X(I) + X2(I)) * .5	DA 223
225	Y(I) = (Y(I) + Y2(I)) + .5	DA 224
226	Z(I)≈(Z(I)+Z2(I))•.5	DA 225
227	XW2=XW1 * XW1 + YW1 * YW1 + ZW1 * ZW1	DA 226 Da 227
228	YW2=SQRT(XW2)	DA 227 DA 228
229	YW2=(XW2/YW2+YW2)•.5	DA 229
230	SI(I)=YW2	DA 230
231 232	CAB(I)≈XW1/YW2	DA 231
232	SAB(I)=YW1/YW2	DA 232
233	XW2=ZW1/YW2	DA 233
235	IF (XW2.GT.1.) XW2=1. IF (XW2.LT1.) XW2=-1.	DA 234
236	SALP(I) = XW2	DA 235
237	XW2=ASIN(XW2)+TD	DA 236
238	YW2=ATGN2(YW1, XW1)+TD	DA 237
239	PRINT 55, I,X(I),Y(I),Z(I),SI(I),XW2,YW2,BI(I),ICON†(I),I,ICON2(I)	DA 238
240	1.ITAG(I)	
241	IF (SI(I).GT.1.E-20.AND.BI(I).GT.1.E-101) GO TO 32	DA 240
242	PRINT 56	DA 241
243	STOP	DA 242
244 32	CONTINUE	DA 243
245 33	IF (M.EQ.0) GO TO 35	DA 244 DA 245
246	PRINT 57	DA 245 DA 246
247	J=LD+1	DA 240 DA 247
248	DO 34 I=1.M	DA 248
2 49 250		DA 249
250	$XW1 = (T1Y(J) \bullet T2Z(J) - T1Z(J) \bullet T2Y(J)) \bullet SALP(J)$	DA 250
252	YW1=(T1Z(J)*T2X(J)-T1X(J)*T2Z(J))*SALP(J) 7W1=(T1X(J)*T2X(J)*T1X(J)*T2Z(J))*SALP(J)	DA 251
253	ZW1 = (T1X(J) * T2Y(J) - T1Y(J) * T2X(J)) * SALP(J) $PRTNT 5R T Y(J) Y(J) = T(J) + T2X(J) + T2X(J)$	DA 252
254	PRINT 58, I,X(J),Y(J),Z(J),XWI,YWI,ZWI,BI(J),T1X(J),T1Y(J),T1Z(J), 1T2X(J),T2Y(J),T2Z(J)	DA 253
255 34	CONTINUE	DA 254
256 35	RETURN	DA 255
		DA 256

				1	-
257	36	PRINT 48			
258		PRINT 49, GM, ITG, NS, XW1, YW1, ZW1, XW2, YW2, ZW2, RAD		257	
259		STOP		258	
260	37	PRINT 50		259	
261		STOP		260	
262		-	÷.	261	
263	38	FORMAT (1X, 15, 2X, 12HARC RADIUS =, F9.5, 2X, 4HFROM, F8.3, 3H TO, F8.3, 8H	DA	262	
264		- DEGREES, 11A, FIT, 3, ZA, 13, 4A, 15, 1X, 15, 3X, 15)			
265	39	FORMAT (6X,3F11.5,1X,3F11.5)	- ·	264	
266	40	FORMAT (////,33X.35H STRUCTURE SPECIFICATION // 77Y DBU	~ .	265	
267		TOUCHDINATES MUST BE INFUT IN, 7,37X, 29HMETERS OR BE SCALED TO VETER		200	
268		43,7,37A,31HDEFORE STRUCTORE INPUT IS ENDED 771	D 4		
269	41	FORMAT (2X, 4HWIRE, 79X, 6HNO, OF, 4X, 5HFTRST 2X, 4HLAST 5X, 3HTAC / 2X			
270		TSHNU, 8X, 2HX1, 9X, 2H11, 9X, 2H21, 10X, 2HX2, 9X, 2HY2, 9X, 2H72, 6X, 6HRADTUS	DA D	209	
271		2,3X,4H3EG,,3X,4HSEG,,3X,4HSEG,,5X,3HNO,)		271	
272		FORMAT (A2, I3, I5, 7F10.5)		272	
273		FORMAT (1X, 15, 3F11.5, 1X, 4F11.5, 2X, 15, 4X, 15, 1X, 15, 3X, 15)		273	
274	44	FORMAT (5Y 344STRUCTURE REFIECTED ALONG THE INFO ALONG THE		274	
275		1GS INCREMENTED BY, IS)		275	
276	45	FORMAT (6X, 30HSTRUCTURE ROTATED ABOUT Z-AXIS, I3, 30H TIMES. LABLES			
277		1 INCREMENTED BY, IS)		277	
278		FORMAT (6X,26HSTRUCTURE SCALED BY FACTOR,F10.5)	DA	278	
279	47	FORMAT (6X, 49HTHE STRUCTURE HAS BEEN MOVED, MOVE DATA CARD IS -/6X	DA	279	
280	_	1,13,15,7F10.5)		280	
281		FORMAT (25H GEOMETRY DATA CARD ERROR)	DA	281	
282		FORMAT (1X,A2,I3,I5,7F10.5)	DA	282	
283	<u>50</u>	FORMAT (69H NUMBER OF WIRE SEGMENTS AND SURFACE PATCHES EXCEEDS DI	DA	283	
284		IMENSION LIMIT.)		284	
285		FORMAT (1X, I5, A1, F10.5, 2F11.5, 1X, 3F11.5)	DA	285	
286		FORMAT (44H ERROR - GF MUST BE FIRST GEOMETRY DATA CARD)	DA	286	
287	53	FORMAT (////33X.33H SEGMENTATION DATA,//,40X,21HCOO	D۸	287	
288		IRDINATES IN METERS,//,25X,50HI+ AND I- INDICATE THE SEGMENTS BEFOR	DA	288	
289		2E AND AFTER I,//)	DA	289	
290	54	FORMAT (2X,4HSEG.,3X,26HCOORDINATES OF SEG. CENTER,5X,4HSEG.,5X,18	DA	290	
291		1HORIENTATION ANGLES, 4X, 4HWIRE, 4X, 15HCONNECTION DATA, 3X, 3HTAG, /, 2X,	DA	291	
292		23HNO., 7X, 1HX, 9X, 1HY, 9X, 1HZ, 7X, 6HLENGTH, 5X, 5HALPHA, 5X, 4HBETA, 6X, 6HR	DA	292	
293		3ADIUS, 4X, 2HI-, 3X, 1HI, 4X, 2HI+, 4X, 3HNO.)	DA	293	
294		FORMAT (1X, 15, 4F10.5, 1X, 3F10.5, 1X, 315, 2X, 15)	DA	294	
295		FORMAT (19H SEGMENT DATA ERROR)	DA	295	
296	5/	FORMAT (///,44X,30H SURFACE PATCH DATA,//,49X,21HCOORD	DA	296	
297		1 INATES IN METERS, //, 1X, 5HPATCH, 5X, 22HCOORD. OF PATCH CENTER, 7X, 18H	ÐA	297	
298		2UNIT NORMAL VECTOR, 6X, 5HPATCH, 12X, 34HCOMPONENTS OF UNIT TANGENT VE	DA	298	
299		3CTORS, /, 2X, 3HNO., 6X, 1HX, 9X, 1HY, 9X, 1HZ, 9X, 1HX, 7X, 1HY, 7X, 1HZ, 7X, 4HAR			
300 301	5.9	4EA,7X,2HX1,6X,2HY1,6X,2HZ1,7X,2HX2,6X,2HY2,6X,2HZ2)	DA		
302		FORMAT (1X, I4, 3F10.5, 1X, 3F8.4, F10.5, 1X, 3F8.4, 1X, 3F8.4)	DA	301	
302	J 3	FORMAT (1X, I5, A1, F10.5, 2F11.5, 1X, 3F11.5, 5X, 9HSURFACE -, I4, 3H BY, I3			
303	60	$\Gamma(0)$	DA		
305			DA		
306	ΨI	FORMAT (9X,43HABOVE WIRE IS TAPERED. SEG. LENGTH RATIO =,F9.5,/,3 13X,11HRADIUS FROM,F9.5,3H TO,F9.5)			
307		END.	DA		
			UA	307-	

.

DB10

PURPOSE

To convert an input magnitude quantity (field) or magnitude squared quantity (power) into decibels.

METHOD

For a squared quantity, the decibel conversion is

$$Q_{db} = 10 \log_{10} Q^2 (Q^2 \text{ input}),$$

and for an unsquared quantity,

$$Q_{db} = 20 \log_{10} Q$$
.

DB10 is used for the squared quantity while the entry DB20 is used for the quantity which is not squared.

SYMBOL DICTIONARY

ALOG10 = external routine (log to the base 10)
DB10 = Q
db
F = scaling term
X = input quantity

CONSTANT

-999.99 = returned for an input less than 10^{-20}

CODE LISTING

1		FUNCTION DB10 (X)	DB	1
2	С		DB	2
3	C	FUNCTION DB RETURNS DB FOR MAGNITUDE (FIELD) OR MAG**2 (POWER) I	DB	3
4	С		DB	4
5		F=10.	DB	5
6		GO TO 1	DB	6
7		ENTRY DB20	DB	7
8		F=20.	08	8
9	1	IF (X.LT.1.E-20) GO TO 2	DB	9
10		DB10=F*ALOG10(X)	DB	10
11		RETURN	DB	11
12	2	DB10=-999.99	DB	12
13		RETURN	D9	13
14		END	D9	14-

PURPOSE

To compute the near electric field due to constant, sine, and cosine current distributions on a segment in free space or over ground.

METHOD

The electric field is computed at the point XI, YI, ZI due to the segment defined by parameters in COMMON/DATAJ/. Either the thin wire or extended thin wire formulas may be used. When a ground is present, the code is executed twice in a loop. In the second pass, the field of the image of the segment is computed, multiplied by the reflection coefficients, and added to the direct field. The reflection coefficients for the reflected ray from the center of the source segment are used for the entire segment.

The field is evaluated in a cylindrical coordinate system with the source segment at the origin, along the z axis. The ρ coordinate of the field evaluation point is computed for the surface of the observation segment as

$$\rho' = (\rho^2 + a^2)^{1/2}$$

where ρ is the distance from the axis of the source segment to (XI, YI, ZI) and a is the radius of the observation segment. The field is computed in ρ and z components as

$$\bar{E} = E_{\rho}(\bar{\rho}/\rho') + E_{z}\hat{z} .$$

Use of ρ' avoids a singularity when (XI, YI, ZI) is the center of the source segment. In the addition of field components, $\bar{\rho}/\rho'$ is used rather than $\bar{\rho}$, since E_{ρ} is the field in the direction $\bar{\rho}'$ to one side of the observation segment.

When the Sommerfeld/Norton option is used for an antenna over ground the electric field at \overline{r} due to the current on a segment is evaluated in three terms as

EFLD

$$\vec{E}(\vec{r}) = \vec{E}_{D}(\vec{r}) + \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \vec{E}_{I}(\vec{r}) + \vec{E}_{S}(\vec{r})$$

 \overline{E}_D is the direct field of the segment in the absence of ground, and \overline{E}_I is the field of the image of the segment reflected in a perfectly conducting ground. These field comonents are evaluated in EFLD between EF19 and EF150. The factor $(k_1^2 - k_2^2)/(k_1^2 + k_2^2)$ is contained in the variable FRATI.

The field \overline{E}_{S} , due to the Sommerfeld integrals is evaluated from EF155 to EF227. If the separation of the observation point and the center of the source segment is less than one wavelength, subroutine ROM2 is called at EF191 to integrate over the segment. DMIN is set to the magnitude of the first two terms in \overline{E} divided by 100 as a lower limit on the denominator of the relative error test in the numerical integration. This relaxes the relative accuracy requirement when \overline{E}_{S} is small compared to the first two terms.

If the separation of the source segment and observation point is greater than a wavelength, SFLDS is called at EF197 to evaluate \overline{E}_{S} by the Norton approximation.

To compute \overline{E}_S with the thin wire approximation applied in a manner consistent with that for \overline{E}_I , the field is evaluated at a point displaced normal to the image of the source segment and normal to the separation \overline{R} . If the direction of the image of the source segment is \hat{j} the displacement is \overline{D} where

 $\vec{D} = \pm a \hat{d} \text{ for } \hat{z} \cdot \hat{d} \gtrless 0$ $\hat{d} = (\hat{j} \times \vec{R}) / |\hat{j} \times \vec{R}|$ a = radius of observation segment

This displaced observation point (XO, YO, ZO) is computed from EF166 to EF181. Some of the complexity is needed to make the result independent of orientation of segments relative to the coordinate axes. To adjust the ρ component of field for the factor $|\bar{\rho}/\rho'|$ the field \bar{E}' is computed as

$$\vec{E}' = F\vec{E} + (1 - F)(\vec{E} \cdot \hat{j})\hat{j}$$
where $F = [\rho^2/(\rho^2 + a^2)]$

$$\rho^2 = |\vec{R}|^2 - (\vec{R} \cdot \hat{j})^2$$

This is done from EF204 to EF218 but is skipped if F (DMIN) is greater than 0.95.

CODING

EF23	Loop over direct and image fields.
EF29 - EF31	Components of $\bar{\rho}$.
EF33 - EF40	Components of $\bar{ ho}/ ho'$ computed.
EF46 - EF62	Electric field of the segment computed by infinitesimal
	dipole approximation.
EF68	Field computed by thin wire approximation.
EF70	Field computed by extended thin wire approximation.
EF72 - EF80	Field converted to x, y, and z components.
EF89 - EF111	Reflection coefficients computed.
EF112 - EF129	Image fields modified by reflection coefficients.
EF130 - EF138	Reflected fields added to direct fields.

SYMBOL DICTIONARY

ΑI	= radius of segment on which field is evaluated
CTH	= cos θ ; θ = angle from axis of infinitesimal dipole or angle
	between the reflecting ray and vertical
EGND	= components of \overline{E}_{S} (see EQUIVALENCE statement)
EPX EPY	= x and y components of $(\vec{E} \cdot \vec{p})\vec{p}$ (see PX)
ETA	= $\eta = (\mu_0 / \epsilon_0)^{1/2}$
IJ	= IJX = flag to indicate field evaluation point is on the
	source segment (IJ = 0)
PI	$= \pi$

-

```
PX
            = x and y components of unit vector normal to the plane of
   PΥ
              incidence of the reflected wave (\hat{p})
            = distance from field evaluation point to the center of the
  R
              source segment
  REFPS
            = reflection coefficient for a horizontally polarized field
            = reflection coefficient for a vertically polarized field
  REFS
  RFL
            = +1 for direct field, -1 for reflected field
  RH
            = 0^{\dagger}
  RHOSPC
            = distance from coordinate origin to the point where the ray
              from the source to (XI, YI, ZI) reflects from the ground
  RHOX
           = x, y, and z components of \vec{\rho} or \vec{\rho}/\rho' or \hat{j} \times \vec{R}
  RHOY
 RHOZ
           = 2\pi R or R or dipole moment for sin ks current
 RMAG
           = z component of unit vector in the direction of the source
 SALPR
             segment or its image
 SHAF
           = half of segment length
           = \rho component of field due to cos ks, sin ks,
 TERC
 TERS
             and constant currents, respectively
 TERK
           = z component of field due to cos ks, sin ks, and
 TEZC
 TEZS
            constant current, respectively
 TEZK
 ΤP
          = 2\pi
 TXC
TYC
TZC
TXS
          = x, y, and z components of field due to cos ks,
TYS
TZS
            sin ks, and constant current
TXK
TYK
ΤZΚ
X = 1
ΥĽ
           x, y, z coordinates of field evaluation point
ZI ]
```

EFLD

LIX LIY LIY	= components of distance from source to observation point	EFLD
X0 Y0 Z0	= coordinates of field evaluation point for E _S	
XSPEC YSPEC	= x, y coordinates of ground plane reflection point	
XYMAG	= horizontal distance from center of source segment to observation point	
Z P	= projection of the vector from the source segment (XI, YI, ZI) onto the axis of the source segment	
ZRATX	= temporary storage for ZRATI	
ZRSIN	= $(1 - Z_R^2 \sin^2 \theta)^{1/2}$ for ground	
ZSCRN	= quantity used in computing reflection coefficient for radial wire ground screen	

CONSTANT

3.141592654 = π 376.73 = $\eta = \sqrt{\mu_0}/\epsilon_0$ 6.283185308 = 2π

EFLD

1	SUBROUTINE EFLD (XI,YI,ZI,AI,IJ)		
2 C		EF	
3 C	COMPUTE NEAR E FIELDS OF A SEGMENT WITH SINE, COSINE, AND	EF	_
4 C 5 C	CONSTANT CURRENTS. GROUND EFFECT INCLUDED.	EF	
6		EF	
7	COMPLEX TXK, TYK, TZK, TXS, TYS, TZS, TXC, TYC, TZC, EXK, EYK, EZK, EXS, EYS, EZ	11 1 C C C	5
8		r. r	6 7
9	2, TEZS, TERS, TEZC, TERC, TEZK, TERK, EGND, FRATI	. Cr FF	8
10	COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ	EF	9
11	1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND	EF	to
12	COMMON /GND/ ZRATI.ZRATI2,FRATI,CL.CH.SCRWL.SCRWR.NRADL,KSYMP,IFAR 1,IPERF.T1.T2	EF	11
13	COMMON /INCOM/ XO, YO, ZO, SN, XSN, YSN, ISNOR	EF	12
14	DIMENSION EGND(9)	EF	13
15	EQUIVALENCE (EGND(1), TXK) (EGND(2), TXK) (EGND(2), EGND(2), EGND(EF	14
16			15
17		EF	16
18	DATA ETA/376.73/,PI/3.141592654/.TP/6.283185308/	EF	17
19		EF	18
20	YIJ=YI-YJ	EF EF	19 20
21 22	IJX=IJ	EF	21
23	RFL=-1.	ĒF	22
23	DO 12 IP=1,KSYMP	E.F	23
25	IF (IP.EQ.2) IJX=1 RFL=-RFL	EF	24
26	SALPR=SALPJ*RFL	EF	25
27	ZIJ=ZI-RFL•ZJ	EF	26
28	ZP=XIJ*CABJ+YIJ*SABJ+ZIJ*SALPR	ΕF	27
29	RHOX=XIJ-CABJ*ZP	EF	28
30	RHOY=YIJ-SABJ•ZP	EF	29
31	RHOZ=ZIJ-SALPR*ZP	£F	30
32	RH=SQRT(RHOX*RHOX+RHOY*RHOY+RHOZ*RHO7+AT*AT)	EF	31
33	IF (RH.GT.1.E-10) GO TO 1	EF EF	32
34	RHOX=0.	EF	33 34
35	RH01=0.	EF	35
36 37	RHOZEO.	EF	36
38 1		EF	37
39	RHOX=RHOX/RH RHOY=RHOY/RH	EF	38
40	RHOZ=RHOZ/RH	EF	39
41 2	R=SORI(7P+7P+RH+PH)	ΕF	40
42	IF (R.I.T. RKH) GO TO 3	EF	41
43 C		EF	42
44 C	LUMPED CURRENT FLEMENT ADDOAL FOR LADOF OFFICIENCE	EF	43
45 C		EF	44
46	RMAG=1P*R	EF EF	45 46
47	CTH=ZP/R	EF	47
48	PX=RH/R	EF	48
49 50	IXK=CMPLX(COS(RMAG),-SIN(RMAG))	ΕF	49
51		EF	50
52		EF	51
53	TF7K-TYK+CTU_T7K+DY	EF	52
54		ĒF	53
55	PMAC-SIN(DIES) (DI	EF CC	54 55
56	TE7C~TE7K+PMAC	EF EF	55 56
57	TERC=TERK * RMAG	EF	57
58	I LZK=TEZK•S	ĒF	58
59	TERK=TERK*S	EF	59
60 61	TXS=(0.,0.)	EF	60
61 62	TYS=(0.,0.) TZS=(0.,0.)	EF	61
63	CO TO S	EF	62
64 3		EF	63
		EF	64

.

					EFLD
65 66			EF	65	
67	-	EKSC FOR THIN WIRE APPROX. OR EKSCX FOR EXTENDED T.W. APPROX.	EF	. –	
68	Ŭ	CALL EXEC (S. 70 BULTO THY TERE THE	EF	67	
69		CALL EKSC (S.ZP.RH.TP.IJX.TEZS.TERS.TEZC.TERC.TEZK.TERK) GO TO 5	EF	68	
70	4		ΕF	69	
71		CALL EKSCX (B,S,ZP,RH,TP,IJX,IND1,IND2,TEZS,TERS,TEZC,TERC,TEZK,TE 1RK)	EF	70	
72	5	TXS=TEZS*CABJ+TERS*RHOX	EF		
73		TYS=TEZS*SABJ+TERS*RHOY	EF	. —	
74		TZS=TEZS*SALPR+TERS*RHOZ	EF	-	
75	6	TXK=TEZK*CABJ+TERK*RHOX	EF		
76		TYK=TEZK*SABJ+TERK*RHOY	£F	75	
77		TZK=TEZK*SALPR+TERK*RHOZ	EF	76	
78		TXC=TEZC*CABJ+TERC*RHOX	EF	77	
79		TYC=TEZC*SABJ+TERC*RHOY	EF	78	
80		TZC=TEZC*SALPR+TERC*RHOZ	EF	79	
81		IF (IP.NE.2) GO TO 11	EF EF	80	
82		IF (IPERF.GT.O) GO TO 10	EF	81 82	
83		ZRATX=ZRATI	EF	83	
84		RMAG=R	ĒF	84	
85	_	XYMAG=SQRT(XIJ*XIJ+YIJ*YIJ)	ĒF	85	
86			EF	86	
87		SET PARAMETERS FOR RADIAL WIRE GROUND SCREEN.	ĒF	87	
88	с		EF	88	
89		IF (NRADL.EQ.0) GO TO 7	EF	89	
90		XSPEC=(XI*ZJ+ZI*XJ)/(ZI+ZJ)	EF	90	
91		YSPEC=(YI*ZJ+ZI*YJ)/(ZI+ZJ)	EF	91	
92		RHOSPC=SQRT(XSPEC+XSPEC+YSPEC+T2+T2)	ĒF	92	
93 94		IF (RHOSPC.GT.SCRWL) GO TO 7	EF	93	
95		ZSCRN=T1*RHOSPC*ALOG(RHOSPC/T2)	EF	94	
96	7	ZRATX=(ZSCRN+ZRATI)/(ETA+ZRATI+ZSCRN) IF (XYMAG.GT.1.E-6) GO TO B	EF		
97		IT (XIMKO.GI.I.E~D) GO (0 B	EF		
98		CALCULATION OF REFLECTION COEFFICIENTS WHEN GROUND IS SPECIFIED.	EF	97	
99		CALCOLATION OF REFLECTION COEFFICIENTS WHEN GROUND IS SPECIFIED.	EF	-	
100	Ŭ.	PX=0.	EF	99	
101				100	
102		CTH=1.		101	
103		7 PSTN- $(1 0)$		102	
104				103 104	
105	8			105	
106				106	
107				107	
108		ZRSIN=CSQRT(1ZRATX*ZRATX*(1CTH*CTH))		108	
109	9	REFS=(CTH-ZRATX*ZRSIN)/(CTH+ZRATX*ZRSIN)		109	
110		$\Delta E E \Delta C$ (20.17) (20.17) (20.17) (20.17) (20.17)		110	
111		REFPS=REFPS-REFS		111	
112		EPY=PX*TXK+PY*TYK	EF	112	
113		EPX=PX*EPY	E۶	113	
114			EF	114	
115			EF	115	
116			ĒF	116	
117			EF	117	
118 119				118	
120			EF		
121		TVC_DEECATVC, DEEDCAECV	EF		
121			EF		
123			ΕF		
124			EF		
125		FRY-RVAERY	EF		
126			EF		
127			EF		
128		TYC-DEFCATVO.DEEDCAEDV	EF	127	
			. .	140	

EFLD

129	170 8550/000	
130 10	TZC=REFS+TZC	EF 129
131	EXK=EXK-TXK+FRATI	EF 130
132	EYK=EYK-TYK+FRATI	EF 130
133	EZK=EZK-TZK•FRATI	EF 132
134	EXS=EXS-TXS+FRATI	EF 133
135	EYS=EYS-TYS+FRATI	EF 134
136	EZS=EZS-TZS+FRATI	EF 135
137	EXC=EXC-TXC+FRATI	EF 136
138	EYC=EYC-TYC*FRATI EZC=EZC-TZC*FRATI	EF 137
139	GO TO 12	EF 138
140 11	EXK=TXK	EF 139
141	EYK=TYK	EF 140
142	EZK=TZK	EF 141
143	EXS=TXS	EF 142
144	EYS=TYS	EF 143
145	EZS=TZS	EF 144
146	EXC=TXC	EF 145
147	EYC=TYC	EF 146
148	EZC=TZC	EF 147
149 12	CONTINUE	EF 148
150	IF (IPERF.EQ.2) GO TO 13	EF 149
151	RETURN	EF 150
152 C		EF 151
153 C	FIELD DUE TO GROUND USING SOMMERFELD/NORTON	EF 152
154 C	STERNER STRUCTURE SOMMER ELD/NOR / ON	EF 153
155 13	SN=SQRT(CABJ*CABJ+SABJ*SABJ)	EF 154
156	IF (SN.LT.1.E-5) GO TO 14	EF 155
157	XSN=CABJ/SN	EF 156
158	YSN=SABJ/SN	EF 157
159	GO TO 15	EF 158
160 14	SN=0.	EF 159
161	XSN=1.	EF 160
162	YSN=0	EF 161 EF 162
163 C		EF 163
164 C	DISPLACE OBSERVATION POINT FOR THIN WIRE APPROXIMATION	EF 164
165 C		EF 165
166 15	ZIJ=ZI+ZJ	EF 166
167	SALPR=-SALPJ	EF 167
168	RHOX=SABJ•ZIJ-SALPR•YIJ	EF 168
169	RHOY=SALPR*XIJ-CABJ*ZIJ	EF 169
170	RHOZ=CABJ*YIJ-SABJ*XIJ	EF 170
171	RH=RHOX • RHOX + RHOY • RHOY + RHOZ • RHOZ	EF 171
172	IF (RH.GT.1.E-10) GO TO 16	EF 172
173	XO=XI~AI*YSN	EF 173
174	YO=YI+AI*XSN	EF 174
175	ZO=ZI	EF 175
176	GO TO 17	EF 176
177 16	RH=AI/SQRT(RH)	EF 177
178	IF (RHOZ.LT.O.) RH=-RH	EF 178
179	XO=XI+RH*RHOX	EF 179
180 181	YO=YI+RH*RHOY	EF 180
182 17		EF 181
183	R=XIJ*XIJ+YIJ*YIJ+ZIJ*ZIJ IF (R.GT95) GO TO 18	EF 182
183 184 C	1 (N.01, 30) OU IU ID	EF 183
185 C	FIELD FROM INTERPOLATION IS INTEGRATED OVER SEGMENT	EF 184
186 C	A CONTRACTOR TO THE CRAILD UVER SEGMENT	EF 185
187	ISNOR=1	EF 186
188	DMIN=EXK*CONJG(EXK)+EYK*CONJG(EYK)+EZK*CONJG(EZK)	EF 187
189	DMIN=.01*SQRT(DMIN)	EF 188
190	SHAF=.5*S	EF 189
191	CALL ROM2 (-SHAF, SHAF, EGND, DMIN)	EF 190 EF 191
192	GO TO 19	EF 192

EFLD

193 C		FF 107
194 C	NORTON FIELD EQUATIONS AND LUMPED CURRENT ELEMENT APPROXIMATION	EF 193
195 C		EF 194
196 1		EF 195
197	CALL SFLDS (0.,EGND)	EF 196
198	GO TO 22	EF 197
199 1	ZP=XIJ*CABJ+YIJ*SABJ+ZIJ*SALPR	EF 198
200	RH=R-ZP *ZP	EF 199
201	IF (RH.GT.1.E-10) GO TO 20	EF 200 EF 201
202	DMIN=0.	EF 201
203	GO TO 21	EF 202 EF 203
204 20		EF 203
205 2	IF (DMIN.GT95) GO TO 22	EF 204 EF 205
206	PX=1DMIN	EF 205 EF 206
207	TERK=(TXK+CABJ+TYK+SABJ+TZK+SALPR)+PX	EF 206 EF 207
208	TXK=DMIN+TXK+TERK+CABJ	
209	TYK=DMIN*TYK+TERK*SABJ	EF 208
210	TZK=DMIN+TZK+TERK+SALPR	EF 209 EF 210
211	TERS=(TXS*CABJ+TYS*SABJ+TZS*SALPR)*PX	EF 210 EF 211
212	TXS=DMIN+TXS+TERS+CABJ	EF 212
213	TYS=DMIN*TYS+TERS*SABJ	EF 212
214	TZS=DMIN+TZS+TERS+SALPR	EF 213
215	TERC=(TXC*CABJ+TYC*SABJ+TZC*SALPR)*PX	EF 215
216	TXC=DMIN*TXC+TERC*CABJ	EF 215
217	TYC=DMIN*TYC+TERC*SABJ	EF 217
218	TZC=DMIN*TZC+TERC*SALPR	EF 218
219 22		EF 219
220	EYK=EYK+TYK	EF 220
221	EZK=EZK+TZK	EF 221
222	EXS=EXS+TXS	EF 222
223	EYS=EYS+TYS	EF 223
224	EZS=EZS+TZS	EF 224
225	EXC=EXC+TXC	EF 225
226	EYC=EYC+TYC	EF 226
227	EZC=EZC+TZC	EF 227
228	RETURN	EF 228
229	END	EF 229-
		LI 223-

EKSC

PURPOSE

To compute the electric field due to current filaments with sin kz, cos kz and constant distributions.

METHOD

Equations 71 through 74 in Part I are used. The current filament is located at the origin of a cylindrical coordinate system, oriented along the z axis, and extending from $-\Delta/2$ to $\Delta/2$. The field is computed in ρ and z components.

SYMBOL DICTIONARY

CINT = $\int_{-\Lambda/2}^{\Lambda/2} \cos (kr)/r dz$ CON = CONX = $j\eta/(8\pi^2)$, $\eta = \sqrt{\mu_0/\epsilon_0}$ CS = cos $(k\Lambda/2)$ ERS EZS = ρ and z components of field due to sin kz, cos kz, and ERC constant (S, C, K, respectively) current distributions EZC extending from $z = -\Delta/2$ to $z = \Delta/2$ ERK EZK GP1 $\int = -(1 + jkr) G_0/r^2$ for $z = -\Delta/2$ and $\Delta/2$, respectively, where $G_0 = \exp(-jkr)/r$ GP2 GZ1 = G_0 for z = $-\Delta/2$ and $\Delta/2$, respectively GZ2 GZP1 = $\partial G_0/\partial z$ at EK21, EK22 and $\partial G_0/\partial \rho$ at EK28, EK29 for $z = -\Delta/2$ and $\Delta/2$, respectively GZP2 = IJX = 0 to indicate that the field point is on the source IJsegment = ρ coordinate of field point RH = kp (k = $2\pi/\lambda$, λ = 1) RHK $RKB2 = (k\rho)^2$ S = Δ SH $= \Delta/2$ SHK = $k\Delta/2$

SINT =
$$\int_{-\Delta/2}^{\Delta/2} \sin (kr)/r dz$$

SS = sin (k $\Lambda/2$)
XK = k = $2\pi/\lambda$, where λ = 1
Z = z coordinate of field point
Z1 = $-\Delta/2 - z$
Z2 = $\Delta/2 - z$
ZPK = kz

CONSTANT

 $4.771341189 = \eta/(8\pi^2)$

CODE LISTING

1	~	SUBROUTINE EKSC (S,Z,RH,XK,IJ,EZS,ERS,EZC,ERC,EZK,ERK)	ĒΚ	1
	C C	COMPUTE E FIELD OF SINE, COSINE, AND CONSTANT CURRENT FILAMENTS B	ΎΕΚ	2
-	C	THIN WIRE APPROXIMATION.	EΚ	3
4		COMPLEX CON, GZ1, GZ2, GP1, GP2, GZP1, GZP2, EZS, ERS, EZC, ERC, EZK, ERK	ΕK	4
5		COMMON /TMI/ ZPK, RKB2, IJX	εκ	5
6		DIMENSION CONX(2)	£Κ	6
7		EQUIVALENCE (CONX, CON)	EΚ	7
8		DATA CONX/0.,4.771341189/	EΚ	8
9		IJX=IJ	EΚ	9
10		ZPK=XK*Z	£κ	10
11		RHK=XK*RH	€K	11
12		RKB2=RHK*RHK	£Κ	12
13		SH=.5*S	£Κ	13
14		SHK=XK+SH	εκ	14
15		SS=SIN(SHK)	£Κ	15
16		CS=COS(SHK)	£Κ	16
17		Z2=SH-Z	εκ	17
18		Z1=-(SH+Z)	£Κ	18
19		CALL GX (Z1,RH,XK,GZ1,GP1)	EΚ	19
20		CALL GX (Z2,RH,XK,GZ2,GP2)	EK .	20
21		GZP1=GP1*Z1	ΕK	21
22		GZP2=GP2*Z2	ΕK	22
23		EZS=CON*((GZ2-GZ1)*CS*XK-(GZP2+GZP1)*SS)	EK	23
24		EZC=-CON*((GZ2+GZ1)*SS*XK+(GZP2-GZP1)*CS)	ĒΚ	24
25		ERK=CON*(GP2-GP1)*RH	ΕK	25
26		CALL INTX (-SHK,SHK,RHK,IJ,CINT,SINT)	ĒΚ	26
27		EZK=-CON*(GZP2-GZP1+XK*XK*CMPLX(CINT,-SINT))	ΕK	27
28		GZP1=GZP1*Z1	ΕK	28
29		GZP2=GZP2*Z2	£Κ	29
30		IF (RH.LT.1.È-10) GO TO 1	ΕK	30
31		ERS=-CON*((GZP2+GZP1+GZ2+GZ1)*SS-(Z2*GZ2-Z1*GZ1)*CS*XK)/RH	ΕK	31
32		ERC=-CON*((GZP2-GZP1+GZ2-GZ1)*CS+(Z2*GZ2+Z1*GZ1)*SS*XK)/RH	EK	32
33		RETURN	EK	33
34	1	ERS=(0.,0.)	EK	34
35		ERC=(0.,0.)	£κ	35
36		RETURN	EK	36
37		END	EK	37-
			=	

EKSCX

PURPOSE

To compute the electric field due to current distributions of sin kz, cos kz, and constant on the surface of a cylinder by the extended thin wire approximation.

METHOD

Equations 84 through 87 in Part I are used. The current tube is centered on the origin of a cylindrical coordinate system, oriented along the z axis and extending from $-\Delta/2$ to $\Delta/2$. The field is computed in ρ and z components.

If INX1 = 2, the field contributions from end 1 of the segment $(z = -\Delta/2)$ are evaluated by the thin wire approximation for a current filament on the cylinder axis. INX2 has the same meaning for end 2 of the segment $(z = \Delta/2)$. The thin-wire approximation is used at an end when there is a bend or change in radius from that end to the next segment.

When the ρ coordinate of the field point (RHX) is less than the radius of the current tube (BX), then RHX and BX are interchanged and a flag, IRA, is set to 1 to cause alternate forms for G₁ and its derivatives to be used in routine GXX.

SYMBOL DICTIONARY

 $= R^2$ A2 В = radius of the current tube BK = kB, where k = $2\pi/\lambda$, $\lambda = 1$ = (BK)²/4 BK2 = radius of the current tube BX CINT = $\int_{-\Delta/2}^{\Delta/2} \cos(kr)/r dz$ = CONX = $j\eta/(8\pi^2)$, where $\eta = \sqrt{\mu_0/\epsilon_0}$ CON CS = cos $(k\Delta/2)$ ERS ' EZS = β and z components of field due to sin kz, cos kz, and ERC constant (S, C, K, respectively) current distributions EZC extending from $z = -\Delta/2$ to $z = \Delta/2$. ERK EZK]

GR1 GR2 = G_2 for $z = -\Delta/2$ and $\Delta/2$, respectively $\frac{GRK1}{GRK2} = \frac{\partial G_1}{\partial \rho}$ GRP1 GRP2 $= \partial G_2 / \partial z'$ GZ1 GZ2 = G₁ $\begin{vmatrix} GZP1 \\ GZP2 \end{vmatrix} = \partial G_1 / \partial z'$ GZZ1 GZZ2 $= \partial G_0 / \partial z'$ = IJX = 0 to indicate that the field point is on the source \mathbf{IJ} segment INX1 = 2 to use the thin wire form at end 1 or end 2, 1NX2 respectively IRA = 1 to indicate RHX < BX = ρ coordinate of the field point or wire radius RH RHK = k(RH)RHX = ρ coordinate of the field point $RKB2 = (RHK)^2$ S = <u>\</u> SH = $\Delta/2$ SHK = $k\Delta/2$ SINT = $\int_{1}^{\Delta/2} \sin (kr)/r dz$ SS = sin $(k\Lambda/2)$ ΧК = k = $2\pi/\lambda$, $\lambda = 1$ Z = z coordinate of field point $Z1 = -\Delta/2 - z$ Z2 $= \Delta/2 - z$ ZPK = kz

CONSTANT

4.77134118 = $\eta/(8\pi^2)$

EKSCX

1	SUBROUTINE EKSCX (BX,S,Z,RHX,XK,IJ,INX1,INX2,EZS,ERS,EZC,ERC,EZK,E	ЕX	1
2 3 C	(hit)	67 h c	2
4 C	COMPUTE E FIELD OF SINE, COSINE, AND CONSTANT CURRENT FILAMENTS BY EXTENDED THIN WIRE APPROXIMATION.	ΕX	3
5	COMPLEX CON G71 G72 G781 G782 C01 G82 G884 G885 FEE THE	ЕX	4
6	COMPLEX CON,GZ1,GZ2,GZP1,GZP2,GR1,GR2,GRP1,GRP2,EZS,EZC,ERS,ERC,GR 1K1,GRK2,EZK,ERK,GZZ1,GZZ2		5
7	COMMON /TMI/ ZPK, RKB2, IJX	EX	6
8	DIMENSION CONX(2)	EX	7
9	EQUIVALENCE (CONX, CON)	EX	8
10	DATA CONX/0.,4.771341189/	EX EX	9
11	IF (RHX.LT.BX) GO TO 1	EX	10 11
12	RH=RHX	EX	12
13	B=BX	EX	13
14		ЕX	14
15	GO TO 2	ΕX	15
16 1	RH≖BX	EΧ	16
17 18	B=RHX	ΕX	17
19 2	IRA=1 SH=.5*S	ΕX	18
20	II=XLI	EX	19
21	ZPK=XK+Z	EX	20
22	RHK=XK+RH	EX	21
23	RKB2=RHK+RHK	EX EX	22 23
24	SHK=XK•SH	EX	23
25	SS=SIN(SHK)	ĒX	25
26	CS=COS(SHK)	£Χ	26
27	Z2=SH~Z	£Χ	27
28	Z1=-(SH+Z)	£Χ	28
29	A2=8*B	EΧ	29
30	IF (INX1.EQ.2) GO TO 3	ΕX	30
31	CALL GXX (Z1,RH,B,A2,XK,IRA,GZ1,GZP1,GR1,GRP1,GRK1,GZZ1)	ΕX	31
32	GO TO 4	EX	32
333 34	CALL GX (Z1,RHX,XK,GZ1,GRK1) GZP1=GRK1+Z1	EX	33
35	GR1=GZ1/RHX	£Χ	34
36	GRP1=GZP1/RHX	EX EX	35 36
37	GRK1=GRK1•RHX	EX	37
38	GZZ1=(0.,0.)	EX	38
39 4	IF (INX2.EQ.2) GO TO 5	EX	39
40	CALL GXX (Z2,RH,B,A2,XK,IRA,GZ2,GZP2,GR2,GRP2,GRK2,GZZ2)	EX	40
41	GO TO 6	ΕX	41
42 5	CALL GX (Z2,RHX,XK,GZ2,GRK2)	ΕX	42
43	GZP2=GRK2*Z2	ΕX	43
44	GR2=GZ2/RHX.	£Χ	44
45	GRP2=GZP2/RHX	EX	45
46 47	GRK2=GRK2+RHX	EX	46
48 6	GZZ2=(0.,0.) EZS=CON+((GZ2-GZ1)+CS+XK-(GZP2+GZP1)+SS)	EX	47
40 0	EZC = -CON*((GZ2+GZ1)*SS*XK+(GZP2+GZP1)*SS)	EX	48
43 50	ERS=-CON*((Z2*GRP2+Z1*GRP1+GR2+GR1)*SS-(Z2*GR2-Z1*GR1)*CS*XK)	EX EX	49 50
51	ERC=-CON*((Z2*GRP2-Z1*GRP1+GR2-GR1)*CS+(Z2*GR2+Z1*GR1)*SS*XK)	EX	51
52	ERK=CON+(GRK2-GRK1)	ĒΧ	52
53	CALL INTX (-SHK,SHK,RHK,IJ,CINT,SINT)	EX	53
54	BK=B*XK	ЕX	54
55	BK2=BK*BK*,25	ΕX	55
56	EZK=-CON*(GZP2-GZP1+XK*XK*(1BK2)*CMPLX(CINT,-SINT)-BK2*(GZZ2-GZZ	£Χ	56
57	11))	ΕX	57
58	RETURN	EX	58
59	END	ΕX	59-

•

PURPOSE

To check for an end of file.

METHOD

ENF uses the standard Fortran end-of-file test and returns the logical values .TRUE. or .FALSE. This separate function is used for convenience in adapting the code to particular computers, since the Fortran end-of-file test statements often differ between computers. The form of ENF here is for CDC computers.

SYMBOL DICTIONARY

CODE LISTING

1	LOGICAL SUNCTION ENGLYMMET		
2	LOGICAL FUNCTION ENF(NUNIT) IF (EOF.NUNIT) 1,2	EN	f
31	ENF=. TRUE.	EN	2
4	RETURN	EN	3
52	ENF=.FALSE.	EN	4
6	RETURN	EN	5
7	END	EN	6
		EN	7-

e

ETMNS

PURPOSE

To fill the array representing the right-hand side of the matrix equation with the negative of the electric field tangent to the segments and with the tangential magnetic field on the surfaces.

METHOD

The array E represents the right-hand side of the matrix equation. For the ith segment, the right-hand side is the negative of the applied electric field component tangent to the segment, and is stored in location i in array E. For the ith surface patch, there are two rows in the matrix equation (from the two components of the vector equations) with locations N + 2i - 1and N + 2i, where N is the total number of wire segments. The contents of E for these locations are

$$E (N + 2i - 1) = -\hat{t}_1 \cdot (\hat{n} \times \overline{H}_i) = \pm t_2 \cdot \overline{H}_i$$
$$E (N + 2i) = \hat{t}_2 \cdot (\hat{n} \times \overline{H}_i) = \pm t_1 \cdot \overline{H}_i$$

where \overline{H}_{i} is the magnetic field applied to patch i. The forms on the right are used in the code with the plus sign applying when $(\hat{t}_{1}, \hat{t}_{2}, \hat{n})$ forms a righthand system and the minus sign when left-hand. To avoid the need to check $(\hat{t}_{1}, \hat{t}_{2}, \hat{n})$, the sign is stored in array SALP where, for patch i, SALP (LD + $1 - i) = \pm 1$ according to $(\hat{t}_{1}, \hat{t}_{2}, \hat{n})$, with LD the length of the arrays in COMMON/DATA/. If the structure has symmetry, the entries in E are reordered by subroutine SOLVES.

The parameter IPR selects the type of excitation; the meanings of other parameters depend on the option selected by IPR and are explained below. The excitations associated with IPR values are:

IPR = 0 applied field voltage source

- 1 incident plane wave, linear polarization
- 2 incident plane wave, right-hand elliptic polarization
- 3 incident plane wave, left-hand elliptic polarization
- 4 infinitesimal current element source
- 5 current slope discontinuity voltage source

ET29 - ET34 Applied field voltage source (IPR = 0).

ET36 - ET38 QDSRC is called for each current slope discontinuity voltage source (IPR = 5).

ET44 - ET160 Incident plane wave. The direction of propagation and polarization of the wave are illustrated in figure 4 in which \hat{p} is the unit vector normal to \hat{k} in the plane defined by \hat{k} and \hat{z} . The plane wave as a function of position \overline{r} is

$$\overline{E}^{I}(\overline{r}) = \overline{E}_{0} \exp(-j\overline{k}\cdot\overline{r})$$

$$\overline{H}^{I}(\overline{r}) = \frac{1}{\eta} \hat{k} \times \overline{E}_{0} \exp(-j\overline{k}\cdot\overline{r})$$

where

 $\overline{\mathbf{k}} = (2\pi/\lambda) \hat{\mathbf{k}}$ \hat{k} = unit vector in direction of propagation $\overline{E}_0 = \hat{E}_1$ for linear polarization = $(\hat{E}_1 - jA\hat{E}_2)$ for right-hand elliptical polarization = $(\hat{E}_1 + jA\hat{E}_2)$ for left-hand elliptical polarization A = ellipse axes ratio $\hat{\mathbf{E}}_2 = \hat{\mathbf{k}} \times \hat{\mathbf{E}}_1$ ET44 - ET58 $P1 = \theta$ $P2 = \phi$ $P3 = \xi$ PX, PY, PZ = x, y, z components of \hat{E}_1 WX, WY, WZ = \hat{k} QX, QY, QZ = $\hat{E}_2 = \hat{k} \times \hat{E}_1$ ET61 - ET68 Ground reflection coefficients computed: RRH = reflection coefficient for E normal to the plane of incidence RRV = reflection coefficient for E in the plane of incidence ET70 - ET108 Linearly polarized wave (IPR = 1).

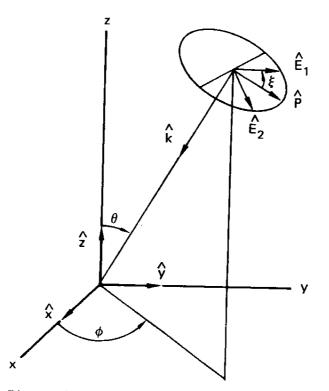


Figure 4. Coordinate Parameters for the Incident Plane Wave.

- Direct illumination of segments by E field. ARG = $-\overline{k} \cdot \overline{r}_{i}$, ET71 - ET73 where $\vec{r}_i = \text{center point of segment I. } E(I) = -(\hat{E}_1 \cdot \hat{i})$ $exp(-jk \cdot r_i)$, where $\hat{i} = unit$ vector in the direction of segment I.
- ET75 ET82 Illumination of segments by the ground reflected field. CX, CY, CZ = reflected E field
- ET84 ET93 Direct H field illumination of patches.
- ET95 ET108 Illumination of patches by the ground reflected field. CX, CY, CZ = reflected H field
- ET113 ET159 Elliptically polarized wave (IPR = 2 or 3). P6 = ellipse axes ratio = A.
- ET116 ET121 Direct E field illumination of segments.

CX, CY, CZ = $\hat{E}_1 \pm jA\hat{E}_2$ (+ for left-hand polarization, - for right-hand)

- ET123 ET130 Illumination of segments by the ground reflected E field.
- ET132 ET144 Illumination of patches by the direct H field. CX, CY

$$CY, CZ = k \times E_0$$

ET146 - ET159 Illumination of patches by ground reflected H field.

$$\begin{split} \overline{E}_{R}(\overline{R}) &= I_{0} \ell \frac{\eta}{2\pi} \exp\left(-jkR\right) \left(1 - \frac{j}{kR}\right) \frac{1}{R^{2}} \cos \theta \ \widehat{R} \\ \overline{E}_{\theta}(\overline{R}) &= I_{0} \ell \frac{\eta}{4\pi} \exp\left(-jkR\right) \left[\frac{jk}{R} + \left(1 - \frac{j}{kR}\right) \frac{1}{R^{2}}\right] \sin \theta \ \widehat{\theta} \\ H_{\phi} &= \frac{I_{0} \ell}{4\pi} \exp\left(-jkR\right) \left(\frac{1}{R^{2}} + \frac{jk}{R}\right) \sin \theta \end{split}$$

If the location and orientation of segment i and the current element with respect to the x, y, z coordinate system are

r
i = location of segment i
i = orientation of segment i
D
D = location of current element
d = orientation of current element

then

$$\overline{R} = \overline{r}_{1} - \overline{D}$$

$$\widehat{R} = \overline{R} / |\overline{R}|$$

$$\cos \theta = \widehat{R} \cdot \widehat{d}$$

$$\sin \theta = [1 - \cos^{2} \theta]^{1/2}$$

The orientation of the current element is defined by its angle of elevation above the x-y plane, a, and the angle from the x axis to its projection on the x-y plane, b. Thus, $\hat{d} = \cos a \cos b \hat{x} + \cos a \sin b \hat{y} + \sin a \hat{z}$. The \hat{R} and $\hat{\theta}$ field components are converted to $\hat{\rho}$ and \hat{d} components E_{ρ} and E_{d} , where

$$E_{d} = E_{R} \cos \theta - E_{\theta} \sin \theta$$
$$E_{\rho} = E_{R} \sin \theta + E_{\theta} \cos \theta$$

and the excitation computed as

$$E(I) = -\hat{i} \cdot (E_d \hat{d} + E_\rho \hat{\rho}) .$$

ETMNS

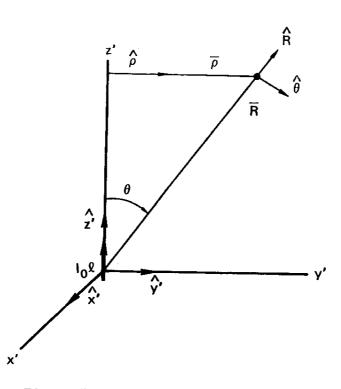


Figure 5. Coordinate Parameters for Current Element.

ET164 - ET225 P1, P2, P3 = x, y, z coordinates of current element (\overline{D}) P4 = aP5 = b $P6 = I_0 \ell / \lambda^2$ ET164 - ET169 WX, WY, WZ = x, y, and z components of \hat{d} DS = $(\eta/2\pi) I_0 \ell/\lambda^2$ DSH = $(1/4\pi) I_0 \ell/\lambda^2$ ET173 Start of loop over all segments and patches. ET176 - ET179 For patches, IS = location of patch data in geometry arrays 11, 12 = locations to be filled in E ET180 - ET182 PX, PY, PZ = \overline{R}/λ ET183 - ET193 R = $\left| \overline{R} / \lambda \right|$ PX, PY, PZ = \hat{R} $CTH = \cos \theta$ STH = sin 0QX, QY, QZ = $\hat{R} - (\hat{d} \cdot \hat{R})\hat{d}$

ET196 - ET204 QX, QY, QZ =
$$\hat{\rho}$$

T1 = exp(-jk R)
ET206 - ET215 E field on segments
T2 = (1 - j/kR) λ^2/R^2
ER = E_R
ET = E _{ρ}
ERH = E _{ρ}
EZH = E _{z}
CX, CY, CZ = x, y, z components of total E field
ET216 - ET224 H field on patches
PX, PY, PZ = $\hat{d} \times \hat{\rho} = \hat{\phi}$
T2 = ±H _{ϕ}
CX, CY, CZ = ±H^I

CONSTANTS

1.E-30 = tolerance in test for zero 2.654420938E-3 = $1/\eta = \sqrt{\epsilon_0/\mu_0}$ 59.958 = $\eta/2\pi$ 6.283185308 = 2π

1		SUBROUTINE ETMNS (P1,P2,P3,P4,P5,P6,IPR,E)	£Τ	
	С		ET	1 2
	C	ETMNS FILLS THE ARRAY E WITH THE NEGATIVE OF THE ELECTRIC FIELD	C T	23
4	С	INCIDENT ON THE STRUCTURE, E IS THE RIGHT HAND SIDE OF THE MATRIX	C I	
5	С	EQUATION.		4
6	С		ET	5
- 7		COMPLEX E.CX, CY, CZ, VSANT, TX1, TX2, ER, ET, EZH, ERH, VQD, VQDS, ZRATI, ZRAT	ET	6
8		112, RRV, RRH, T1, TT1, TT2, FRATI		7
9		COMMON /DATA/ LD, N1, N2, N, NP, M1, M2, M, MP, X(300), Y(300), Z(300), SI(300)	ET	8
10		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(E I	9
11		2300), WLAM, IPSYM		10
12		COMMON /ANGL/'SALP(300)	ET	11
13		COMMON /VSORC/ VQD(30), VSANT(30), VQDS(30), IVQD(30), ISANT(30), IQDS(ET	12
14		130), NVQD, NSANT, NQDS		13
15		COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR,	ET	14
16		1IPERF, T1, T2		15
17		DIMENSION CAB(1), SAB(1), E(600)	ET	16
18		DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)	ĒT	17
19		EQUIVALENCE (CAB.ALP). (SAB.BET)	ET	18
20		EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON	εĩ	19
21		12), (T2Z,ITAG)	ET	20
22		DATA TP/6.283185308/.RETA/2.654420938E-3/	ET	21 22
23		NEQ=N+2*M	ET	
24		NQDS=0	ET	23
25		IF (IPR.GT.O.AND.IPR.NE.5) GO TO 5	ET	24
26	С		ET	25
27	С	APPLIED FIELD OF VOLTAGE SOURCES FOR TRANSMITTING CASE		26
28	с		ET ET	27
29		DO 1 I=1,NEQ	ET	28 29
30	1	E(I)=(0.,0.)	ET	29 30
31		IF (NSANT.EQ.0) GO TO 3	ET	31
32		DO 2 I=1,NSANT	ET	32
33		IS=ISANT(I)	ET	33
34	2	E(IS)=-VSANT(I)/(SI(IS)*WLAM)	ET	34
35		IF (NVQD.EQ.O) RETURN	ET	34
36		DO 4 I=1,NVQD	ET	36
37		IS=IVQD(I)	ET	37
38	4	CALL QDSRC (IŞ,VQD(I),E)	ET	38
39		RETURN	ET	39
40	5 ·	IF (IPR.GT.3) GO TO 19	ET	40
41	С		ET	41
42	С	INCIDENT PLANÉ WAVE, LINEARLY POLARIZED.	ET	42
43	С		ĒΤ	43
44		CTH≖COS(P1)	ET	44
45		STH=SIN(P1)		45
46		CPH=COS(P2)	ET	46
47		SPH=SIN(P2)	ET	47
48		CET=COS(P3)	ĒΤ	48
49		SET=SIN(P3)	ET	49
50		PX=CTH+CPH+CET~SPH+SET	ET	50
51		PY=CTH+SPH+CET+CPH+SET	ΕT	51
52		PZ=-STH*CET	£Τ	52
53		WX=-STH*CPH	ET	53
54		WY=-STH*SPH	ET	54
5 5		WZ=-CTH	ΕT	55
56		QX=WY*PZ-WZ*PY	ЕT	56
57		QY=WZ*PX-WX*PZ	ΕT	57
58		QZ=WX*PY-WY*PX	ЕT	58
59		IF (KSYMP.EQ.1) GO TO 7	ΕT	59
60		IF (IPERF.EQ.1) GO TO 6	ΕT	60
61		RRV=CSQRT(1ŹRATI*ZRATI*STH*STH)	£Τ	61
62		RRH=ZRATI*CTH	€T	62
63		RRH=(RRH-RRV)/(RRH+RRV)	ET	63
64		RRV=ZRATI*RRV	ΈT	64

65					ΕI
66		RRV=-(CTH-RRV)/(CTH+RRV) GO TO 7	EI	65	
	6	RRV=-(1.,0))	ET		
68		RRH=~(1.,0.)	ET		
	7	IF (IPR.GT.1) GO TO 13	٤T		
70		IF (N.EQ.0) GO TO 10	ΕT		
71		DO 8 I=1 N	ET		
72		$ARG = -TP \bullet (WX \bullet X(I) + WY \bullet Y(I) + WZ \bullet Z(I))$	ET ET		
73 74		E(I) = -(PX * CAB(I) + PY * SAB(I) + PZ * SALP(I)) * CMPLX(COS(ARG), SIN(ARG)) IF (KSYMP FO.1) CO. IO. IO.	ΕT		
75			ET		
76		TT1=(PY+CPH-PX+SPH)+(RRH-RRV) CX=RRV+PX-TT1+SPH	ET		
77		CY=RRV*PY+TTI*CPH	EŤ		
78		CZ=-RRV*PZ	ΕT	77	
79		DO 9 I=1,N	ΕT		
80		$ARG = -TP \bullet (WX \bullet X(I) + WY \bullet Y(I) - WZ \bullet Z(I))$	ET	79	
81	9	$E(I) = E(I) - (CX \cdot CAB(I) + CY \cdot SAB(I) + CZ \cdot SALP(I)) \cdot CMPLX(COS(ARG), SIN(ARG))$	ET	80	
82		1)	ET	81 82	
	10	IF (M.EQ.0) RETURN	ET	83	
84		I=LD+1	ET	84	
85 86			ΕT	85	
87		DO 11 IS=1.M I=I-1	ΕT	86	
88		I = I 1 + 2	ET	87	
89		I2=I1+1	ET	88	
90		$ARG = -TP^{\bullet}(WX^{\bullet}X(I) + WY^{\bullet}Y(I) + WZ^{\bullet}Z(I))$	ET	89	
91		TT1=CMPLX(COS(ARG),SIN(ARG))*SALP(I)*RETA	ET ET	90	
92		E(I2) = (QX * T 1X(I) + QY * T 1Y(I) + QZ * T 1Z(I)) * T T 1	ET	91 92	
93	11	$E(I1) = (QX \cdot T2X(I) + QY \cdot T2Y(I) + QZ \cdot T2Z(I)) \cdot TT1$	ET	93	
94		IF (KSYMP.EQ.1) RETURN	εT	94	
95		TT1=(QY+CPH-QX+SPH)+(RRV-RRH)	ΕT	95	
96		CX=-(RRH+QX-TT1+SPH)	ΕT	96	
97 98		CY=-(RRH*QY+TT1*CPH)	ΕT	97	
99		CZ=RRH•QZ I=LD+1	ΕT	98	
100		1-LD+1 I1=N-1	ET	99	
101		DO 12 IS=1.M		100	
102				101 102	
103				102	
104		I2=I1+1		104	
105		ARG=-TP*(WX*X(I)+WY*Y(I)-WZ*Z(I))		105	
106		TT1=CMPLX(COS(ARG),SIN(ARG)) + SALP(I) + RETA	ΕT	106	
107	10	E(I2)=E(I2)+(CX*TIX(I)+CY*TIY(I)+CZ*TIZ(I))*TTI	ΕT	107	
108 109	12	E(I1)=E(I1)+(CX*T2X(I)+CY*T2Y(I)+CZ*T2Z(I))*TT1 RETURN		108	
110	C	RETORIN		109	
111		INCIDENT PLANE WAVE, ELLIPTIC POLARIZATION.		110	
112				111 112	
113	13			113	
114		IF (IPR.EQ.3) TTI=-TTI		114	
115			ΕT	115	
116		CX=PX+TTI*QX	ξŢ	116	
117 118				117	
119				118	
120		400m, TD&(WVAV/T) WVAV/T) W7A7/T)		119	
121	14	F(T) = (CV + CAP(T)) CV + CAP(T)) CT + CAP(T)) + O(T) +		120	
122		TE / VEVUE EO (1) OO TO (2)		121 122	
123				122	
124		CX=RRV*CX-TT2*SPH		124	
125		CY≖RRV+CY+TT2+CPH		125	
126		CZ=-RRV*CZ		126	
127 128		- ▲ □ ○ → □ □ □ ○ → ○ ↓ □ ○ → ○ ↓ ○ → → ○ ↓ ○ → ○ → ○ → ○ → ○ → ○		127	
		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	ET	128	

ETMNS

129	15	E(I) = E(I) - (CX * CAB(I) + CY * SAB(I) + CZ * SAB(I) +		
130		<pre>E(I)=E(I)-(CX*CAB(I)+CY*SAB(I)+CZ*SALP(I))*CMPLX(COS(ARG).SIN(ARG) 1)</pre>		
131		IF (M.EQ.O) RETURN		130
132		CX=QX-TT1+PX		131
133		CY=QY-TT1•PY		132
134		CZ=QZ-TT1+PZ		133
135		I≂LD+1		134
136		I1=N-1		135 136
137		DO 17 IS=1,M		137
138		I=I-1		138
139		I1=I1+2		139
140		I2=I1+1		140
141		ARG=-TP*(WX*X(I)+WY*Y(I)+WZ*Z(I))		141
142		TT2=CMPLX(COS(ARG),SIN(ARG)) * SALP(I) * RETA		142
143		E(I2) = (CX * T1X(I) + CY * T1Y(I) + CZ * T1Z(I)) * TT2	ЕT	143
144	17	E(I1)=(CX*T2X(I)+CY*T2Y(I)+CZ*T2Z(I))*TT2	ΕT	144
145 146		IF (KSYMP.EQ.1) RETURN	ΕT	145
140		TT1=(CY*CPH-CX*SPH)*(RRV-RRH)		146
148		CX=-(RRH*CX-TT1*SPH) CY=-(RRH*CY+TT1*CPH)		147
149		CZ=RRH*CZ		148
150		I=LD+1		149
151		I1=N-1		150
152		DO 18 IS=1,M	ET	
153		I=I-1		152 153
154		11=11+2		155
155		I2=I1+1	ET	
156		ARG=-TP*(WX*X(I)+WY*Y(I)-WZ*Z(I))		155
157		TT1=CMPLX(COS(ARG),SIN(ARG))*SALP(I)*RETA		157
158		E(I2)=E(I2)+(CX*TIX(I)+CY*TIY(I)+CZ*TIZ(I))*TT1		158
159	18	E(I1) = E(I1) + (CX + T2X(I) + CY + T2Y(I) + CZ + T2Z(I)) + TT1		159
160		RETURN	ΕT	160
161			ET	161
162	C	INCIDENT FIELD OF AN ELEMENTARY CURRENT SOURCE.		162
163				163
164	19	WZ=COS(P4) .		164
165		WX=WZ*COS(P5)		165
166		WY=WZ*SIN(P5)		166
167		WZ=SIN(P4)		167
168		DS=P6*59.958		168 169
169 170		DSH=P6/(2. • TP) NPM=N+M		170
171		IS=LD+1		171
172		13-2041 11=N-1		172
173		DO 24 I=1,NPM		173
174		II=I		174
175		IF (I.LE.N) GO TO 20	EΤ	175
176		IS=IS-1	ĘΤ	176
177		II=IS	ΕT	177
178		I1=I1+2		178
179		I2=I1+1		179
180	20	PX=X(II)-P1		180
181		PY=Y(II)-P2		181
182		PZ=Z(II)-P3		182
183		RS=PX+PX+PY+PZ+PZ		183
184		IF (RS.LT.1.E-30) GO TO 24		184 185
185		R=SQRT(RS)		186
186		PX=PX/R PY=PY/R		187
187		PT=PT/R PZ=PZ/R		188
188 189		CTH=PX+WX+PY+WY+PZ+W2		189
190		STH=SQRT(1,-CTH+CTH)		190
191		QX=FX-WX*CTH		191
192		QY≂PY-WY+CTH	ΕŢ	192

		ETMNS
193	QZ=PZ-WZ+CTH	
194	ARG=SQRT(QX+QX+QY+QZ+QZ)	ET 193
195	IF (ARG.LT.1.E-30) GO TO 21	ET 194
196	QX=QX/ARG	ET 195
197	QY=QY/ARG	ET 196
198	QZ=QZ/ARG	ET 197
199	GO TO 22	ET 198
200 21	QX=1.	ET 199
201	QY=0.	ET 200
202	QZ=0.	ET 201
203 22	ARG=-TP+R	ET 202
204	TT1=CMPLX(COS(ARG),SIN(ARG))	ET 203
205	IF (I.GT.N) GO TO 23	ET 204
206	TT2=CMPLX(1.,-1./(R*TP))/RS	ET 205
207	ER=DS+TT1+TT2+CTH	ET 206
208	ET=.5*DS*TT1*((0.,1.)*TP/R+TT2)*STH	ET 207
209	EZH=ER*CTH-ET*STH	ET 208
210	ERH=ER*STH+ET*CTH	ET 209
211	CX=EZH*WX+ERH*QX	ET 210
212	CY=EZH*WY+ERH*QY	ET 211
213	CZ=EZH*WZ+ERH*QZ	ET 212
214	E(I) = -(CX * CAB(I) + CY * SAB(I) + CZ * SALP(I))	ET 213
215	GO TO 24	ET 214
216 23	PX=WY*QZ-WZ*QY	ET 215
217	PY=WZ •QX -WX •QZ	ET 216
218	PZ=WX+QY-WY+QX	ET 217
219	TT2=DSH*TT1*CMPLX(1./R.TP)/R*STH*SALP(II)	ET 218
220	CX=TT2*PX	ET 219
221	CY=TT2*PY	ET 220
222	CZ=TT2*PZ	ET 221
223	E(I2)=CX*T1X(II)+CY*T1Y(II)+CZ*T1Z(II)	ET 222
224	E(I1)=CX*T2X(II)+CY*T2Y(II)+CZ*T2Z(II)	ET 223
225 24	CONTINUE	ET 224
226	RETURN	ET 225
227	END	ET 226
<i>LL1</i>		ET 227-

•

FACGF

PURPOSE

To perform the steps in the NGF solution that do not depend on the excitation vector.

METHOD

The NGF solution procedure is discussed in Section VI. The steps performed in FACGF are to evaluate $A^{-1}B$ and $D - CA^{-1}B$. The matrix $D - CA^{-1}B$ is then factored into triangular matrices L and U. The procedure is complicated by the possible need to use file storage for the matrices. The comments in the code and the tables for ICASX = 2, 3 and 4 in Section VII offer a fairly complete description of the procedure.

SYMBOL DICTIONARY

A	= array for matrix A (L U factors) or block of A if file storage
	is used
В	= array for B or block of B
ВX	= array for B when $A^{-1}B$ is being computed with ICASX = 2. The
	array B starts at the beginning of CM in this case. BX leaves
	room for A _F at the beginning of CM
C	= array for C or block of C (matrix transposed)
D	≖ array for D or block of D (matrix transposed)
IBFL	= file on which B is stored
ICASS	= saved value of ICASE
IP	= pivot index array
IX	≖ data on row interchanges in LFACTR
M1	number of patches in the NGF
MP	= number of patches in a symmetric section in the NGF
N1	number of segments in the NGF
NIC	= number of columns in C (same as order of A)
NICP	= N1C + 1
N 2C	= order of matrix D
NBLSYS	
NIC	<pre>= index increment</pre>
NLSYS	■ saved value of NLSYM

٠

= number of segments in a symmetric section in the NGF

,

SYS = saved value of NPSYM

JM = summation variable for matrix products

FACGF

1	~	SUBROUTINE FACGE (A.B.C.D.BX, IP, IX, NP, N1, MP, M1, N1C, N2C)	FG	1
	С	FACGE COMPUTES AND FACTORS D-C(INV(A)B).	FG	2
3		COMPLEX A, B, C, D, BX, SUM	FG	3
4		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	FG	4
5		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	FG	5
6		DIMENSION A(1), B(N+C,1), C(N+C,1), D(N2C,1), BX(N+C,1), IP(1), IX	FG	6
7		1(1)	FG	7
8		IF (N2C.EQ.0) RETURN	FG	8
9		IBFL=14	FG	9
10		IF (ICASX.LT.3) GO TO 1	FG	10
11	С	CONVERT B FROM BLOCKS OF ROWS ON T14 TO BLOCKS OF COL. ON T16	FG	11
12		CALL REBLK (B,C,N1C,NPBX,N2C)	FG	12
13		IBFL=16	FG	13
14	1	NP8=NP8L	FG	14
15		IF (ICASX.EQ.2) REWIND 14	FG	
16	с	COMPUTE INV(A)B AND WRITE ON TAPE14		15
17	-	DO 2 IB=1,NBBL	FG	16
18		IF (IB.EQ.NBBL) NPB=NLBL	FG	17
19		IF (ICASX.GT.1) READ (IBFL) ((BX(I,J),I=1,N1C),J=1,NPB)	FG	18
20		(1000,01,1) (LBU (10FC) ((0X(1,0),12),NC),3=1,NPH)	FG	19
21		CALL SOLVES (A.IP.8X,NIC.NPB,NP,N1,MP,M1,13,13) IF (ICASX.EQ.2) REWIND 14	FG	20
22			FG	21
	2	IF (ICASX.GT.1) WRITE (14) ((BX(I,J),I=1.N1C),J=1.NPB)	FG	22
23	Ζ.	CONTINUE	FG	23
24		IF (ICASX.EQ.1) GO TO 3	FG	24
25		REWIND 11	FG	25
26		REWIND 12	FG	26
27		REWIND 15	FG	27
28		REWIND IBFL	FG	28
29	3	NPC=NPBL	FG	29
30	С	COMPUTE D-C(INV(A)B) AND WRITE ON TAPE11	FG	30
31		DO 8 IC=1,NBBL	FG	31
32		IF (IC.EQ.NBBL) NPC=NLBL	FG	32
33		IF (ICASX.EQ.1) GO TO 4	FG	33
34		READ (15) ((C(I, J), I=1, N1C), J=1, NPC)	FG	34
35		READ (12) ((D(I,J),I=1,N2C), J=1,NPC)	FG	35
36		REWIND 14	FG	36
37	4	NPB=NPBL	FG	37
38		NIC=0		
39		DO 7 IB=1.NBBL	FG	38
40		IF (IB.EQ.NBBL) NPB=NLBL	FG	39
41		IF (ICASX.GI.1) READ (14) ((B(I,J),I=1,N1C),J=1,NPB)	FG	40
42		DO 6 $I=1,NPB$	FG	41
43			FG	42
44			FG	43
		DO = 6 J = 1, NPC	FG	44
45		SUM=(0.,0.)	FG	45
46			FG	46
47		$SUM=SUM+B(K,I) \circ C(K,J)$	FG	47
48		D(II,J)=D(II,J)-SUM	FG	48
49	/	NIC=NIC+NPBL	FG	49
50	-	IF (ICASX.GT.1) WRITE (11) ((D(I,J),I=1,N2C),J=1,NPBL)	FG	50
51	8	CONTINUE	FG	51
52		IF (ICASX.EQ.1) GO TO 9	FG	52
53		REWIND 11	FG	53
54		REWIND 12	FG	54
55		REWIND 14	FG	55
56		REWIND 15	FG	56
57	9	N1CP=N1C+1	FG	57
58	с	FACTOR D-C(INV(A)B)	FG	58
59		IF (ICASX.GT.1) GO TO 10	FG	59
60		CALL FACTR (N2C, D, IP(N1CP), N2C)	FG	
61				60 61
62	10		FG	61 62
63		NDB-NBD/	FG	62
64			FG FG	63 64
			(N	64

				FACGF
65		DO 11 IB=1,N8BL	FG	65
66		IF (IB.EQ.NBBL) NPB=NLBL	FG	66
67		II=IC+1	FG	67
68		IC=IC+N2C*NPB	FC	68
69	11	READ (11) (B(I.1),I=II,IC)	FG	69
70		REWIND 11	FG	70
71		CALL FACTR (N2C, B, IP(N1CP), N2C)	FG	70
72		NIC=N2C*N2C	FG	72
73		WRITE (11) (B(I,1),I=1,NIC)	FG	73
74		REWIND 11	FG	74
75		GO TO 13	FG	74 75
76	12	NBLSYS=NBLSYM	FG	76
77		NPSYS=NPSYM	FG	76 77
78		NLSYS≠NLSYM	FG	778
79		ICASS=ICASE	FG	78 79
80		NBLSYM=NBBL	FG	79 80
81		NPSYM=NPBL	FG	81
82		NLSYM=NLBL	FG	82
83		ICASE=3	FG	83
84		CALL FACIO (B,N2C,1,IX(N1CP),11,12,16,11)	FG	84
85		CALL LUNSCR (B,N2C, 1. IP(N1CP), IX(N1CP), 12, 11, 16)	FG	85
86		NBLSYM=NBLSYS	FG	86
87		NPSYM=NPSYS	FG	87
88		NLSYM=NLSYS	FG	88
89		ICASE=ICASS	-	
90	13	RETURN	FG FG	89
91	. 🕶	END		90
			FG	91-

FACIO

FAC10

PURPOSE

To read and write matrix blocks needed for the LU decomposition.

METHOD

Sequential access is used on all files. The matrix is initially stored on file IUl in blocks of columns of the transposed matrix. The block size is such that two blocks will fit into the array A for the Gauss elimination process. If the matrix were divided into four blocks, the order for reading the blocks into core would be

Blocks

1, 2	1 and 2 will be completely factored
1, 3 1, 4	3 and 4 partially factored
1, 41	
2, 3	factorization of 3 completed
2,4	4 partially factored
3, 4	factorization complete

IUl is the initial input file. Partially factored blocks are read from file IFILE3 and written to IFILE4 where IFILE3 = IU3 and IFILE4 = IU4 when IXBLK1 is odd, and IFILE3 = IU4 and IFILE4 = IU3 when IXBLK1 is even. Completed blocks are written to file IU2. Although the last block may be shorter than other blocks the same number of words is read or written. The excess words are ignored in subroutine LFACTR.

Subroutine LFACTR is called to perform the Gauss elimination. For a symmetric structure the loop from FO18 to FO43 factors each submatrix.

SYMBOL DICTIONARY

A	= array for matrix storage
11	= location in A of beginning of block 1
I 2	= location in A of end of block l
13	= location in A of beginning of block 2
14	= location in A of end of block 2
IFILE3	= input file
IFILE4	= output file
IP	= array for pivot element indices

IΥ	= number of words in a matrix block
101, 102, 103, 104	= file numbers
ſ XBLK 1	= number of first block stored in A
IXBLK 2	= number of second block stored in A .
КА	= first location in IP for submatrix KK
NBM	= number of blocks minus one
NOP	= number of submatrices for symmetry
NROW	= number of rows in a block
T1, T2, TIME	= variables to sum total time spent in LFACTR

FACIO

\CIO

1 2 C	SUBROUTINE FACIO (A,NROW,NOP,IP,IU1,IU2,IU3,IU4)	FO	1
2 C 3 C	FACIO CONTROLS I/O FOR OUT-OF-CORE FACTORIZATION	FO	2
4 C	FACTO CONTROLS I/O FOR OUT-OF-CORE FACTORIZATION	FO	3
5	COMPLEX A	FO	4
6	COMMON /MATPAR/ ICASE,NBLOKS,NPBLK,NLAST,NBLSYM,NPSYM,NLSYM,IMAT,	FO	5
7	1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL		6
8	DIMENSION A(NROW, 1), IP(NROW)	FO	7
9	IT=2*NPSYM*NROW	FO	8
10	NBM=NBLSYM-1	FO	9
11	I1=1	FO	10
12	I2=IT	FO FO	11
13	I3=I2+1	FO	12
14	I4=2*IT	FO	13 14
15	TIME=0.	FO	15
16	REWIND IU1	FO	16
17	REWIND IU2	FO	17
18	DO 3 KK=1,NOP	FO	18
19	KA=(KK-1)*NROW+1	FO	19
20	IFILE3=IU1	FO	20
21	IFILE4=IU3	FO	21
22	DO 2 IXBLK1=1,NBM	FO	22
23	REWIND IU3	FO	23
24	REWIND IU4	FO	24
25	CALL BLCKIN (A,IFILE3,I1,I2,1.17)	FO	25
26	IXBP=IXBLK1+1	FO	26
27	DO 1 IXBLK2=IXBP,NBLSYM	FO	27
28	CALL BLCKIN (A,IFILE3,I3,I4,1,18)	FO	28
29	CALL SECOND (T1)	FO	29
30	CALL LFACTR (A,NROW,IXBLK1,IXBLK2,IP(KA))	FO	30
31	CALL SECOND (T2)	FO	31
32	TIME=TIME+T2-T1	FO	32
33	IF (IXBLK2.EQ.IXBP) CALL BLCKOT (A,IU2,I1,I2,1,19)	FO	33
34	IF (IXBLK1.EQ.NBM.AND.IXBLK2.EQ.NBLSYM) IFILE4=IU2	FO	34
35	CALL BLCKOT (A,IFILE4,I3,I4,1,20)	FO	35
36 1	CONTINUE	FO	36
37	IFILE3=IU3	FO	37
38	IFILE4=IU4	FO	38
39	IF ((IXBLK1/2)*2.NE.IXBLK1) GO TO 2	FO	39
40	IFILE3=IU4	FO	40
41	IFILE4=IU3	FO	41
42 2	CONTINUE	FO	42
43 3	CONTINUE	FO	43
44	REWIND IUI	FO	44
45	REWIND IU2	FO	45
46	REWIND IU3	FO	46
47	REWIND IU4	FO	47
48	PRINT 4, TIME	FO	48
49 50 C	RETURN	FO	49
50 C	EQUALT (354 OF THE TAKEN FOR EACTORIZATION - E12 5)	FO	50
51 4 52	FORMAT (35H CP TIME TAKEN FOR FACTORIZATION = ,E12.5)	FO	51
J 2	END	FO	52-

•

PURPOSE

To factor a complex matrix into a lower triangular and an upper triangular matrix using the Gauss-Doolittle technique. The matrix in this case is a transposed matrix. The factored matrix is used by subroutine SOLVE to determine the solution of the matrix equation Ax = B.

METHOD

The algorithm used in this routine is presented by A. Ralston (ref. 1). The decomposition of the matrix A is such that A = LU, where L is a lower triangular matrix with 1's down the diagonal, and U is an upper triangular matrix. The L and U matrices overwrite the matrix A. The computations to obtain L and U are done using one complex scratch vector (D) and one integer vector (IP) that keep track of row interchanges when elements are positioned for size. If positioning for size is not taken into account, the general procedure is

$$a_{11} = u_{11}$$

 $a_{i1} = \ell_{i1}u_{11}$ $i = 2, ..., n$

which gives the first column of the L and U matrices. Then

^a12 = ^u12
^a22 =
$$\ell_{21}u_{12} + u_{22}$$

^a₁₂ = $\ell_{11}u_{12} + \ell_{12}u_{22}$ i = 3, ..., n

gives the second column. The computations for the successive columns continue in this way. The general equations for the r^{th} column are

$$a_{1r} = u_{1r}$$

$$a_{2r} = \ell_{21}u_{1r} + u_{2r}$$

$$\vdots$$

$$a_{rr} = \ell_{r1}u_{1r} + \ell_{r2}u_{2r} + \dots + \ell_{r,r-1}u_{r-1,r} + u_{rr}$$

$$a_{ir} = \ell_{i1}u_{1r} + \dots + \ell_{ir}u_{rr}, \quad i = r + 1, \dots, n$$

$$-123-$$

There are only two differences in the coding used in FACTR and the coding suggested by Ralston. The first is that double precision variables are not used for the accumulation of sums, since for the size and conditioning of the matrices anticipated in core, the computer word length is sufficient to insure accuracy. The second difference is that the row and column indices of the A matrix in the routine have been interchanged to handle the transposed matrix.

CODING

The coding is divided into five steps which correspond to the steps given by Ralston.

FA14	Loop over columns (rows with the interchanged indices used
	in the routine).
FA18 - FA20	Fill D vector with column (row) of A.
FA24 - FA35	Solution for u_{ir} (i = 1,,r) in the above equations
	taking into account positioning.
FA40 - FA54	Selecting largest value for positioning.
FA58 - FA62	Solution for l_{ir} (i = r + 1,,n) in the above equations.
	Printing of small pivot elements.

SYMBOL DICTIONARY

_ . . .

А	= input transposed matrix overwritten with calculated L $^{ m T}$ and U $^{ m T}$
	matrices
CONJG	<pre>= external routine (conjugate of a complex number)</pre>
D	= scratch vector
DMAX	= maximum value in D
ELMAG	= intermediate variable
I	= DO loop index
IFLG	= small pivot flag
IP	= integer vector storing positioning information
J	= DO loop index
JP1	= J + 1
К	= DO loop index
N	= order of matrix being factored
NDIM	= dimensions of the array where the matrix is stored. NDIM \geq N
РJ	= intermediate variable
PR	= intermediate variable

R = DO loop index
REAL = external routine (real part of complex number)
RM1 = R - 1
RP1 = R + 1

FACTK

1	SUBROUTINE FACTR (N,A,IP,NDIM)	FA	1
2 C		FA	2
3 C	SUBROUTINE TO FACTOR A MATRIX INTO A UNIT LOWER TRIANGULAR MATRIX	FA	3
4 C	AND AN UPPER TRIANGULAR MATRIX USING THE GAUSS-DOOLITTLE ALGORITHM	FA	4
5 C	PRESENTED ON PAGES 411-416 OF A. RALSTON-A FIRST COURSE IN .	FA	5
6 C	NUMERICAL ANALYSIS. COMMENTS BELOW REFER TO COMMENTS IN RALSTONS	FA	6
7 C	TEXT. (MATRIX TRANSPOSED.	FA	7
8 C		FA	8
9	COMPLEX A,D,ARJ	FA	9
10	DIMENSION A(NDIM,NDIM), IP(NDIM)	FA	10
11	COMMON /SCRATM/ D(600)	FA	11
12	INTEGER R,RM1,RP1,PJ,PR	FA	12
13	IFLG=0	FΑ	13
14	DO 9 R=1,N	FA	14
15 C		FA	15
16 C	STEP 1	FA	16
17 C		FA	17
18	DO 1 K=1,N	FA	18
19	D(K)=A(R,K)	FA	19
20 1	CONTINUE	FA	20
21 C		FA	21
22 C	STEPS 2 AND 3	FA	22
23 C		FA	23
24	RM1=R-1	FA	24
25	IF (RM1.LT.1) GO TO 4	FA	25
26	DO 3 J=1,RM1	FA	26
27	PJ=IP(J)	FA	27
28	ARJ=D(PJ)	FA	28
29	A(R,J)=ARJ	FA	29
30	D(PJ)=D(J)	FA	30
31	JP1=J+1	FA	31
32	DO 2 I=JP1,N	FA	32
33	D(I)=D(I)-A(J,I)*ARJ	FA	3 3
34 2	CONTINUE	FA	34
35 3	CONTINUE	FA	35
364	CONTINUE	FA	36
37 C		FA	37
38 C	STEP 4	FA	38
39 C		FA	39
40	DMAX=REAL(D(R)*CONJG(D(R)))	FA	40
41	IP(R)=R	FA	41
42	RP1=R+1	FA	42
43	IF (RP1.GT.N) GO TO 6	FA	43
44	DO 5 I=RP1,N	FA	44
45	ELMAG=REAL(D(I) * CONJG(D(I)))	FA	45
46	IF (ELMAG.LT.DMAX) GO TO 5	FA	46
47	DMAX=ELMAG	FA	47
48	IP(R)=I	FA	48
49 5	CONTINUE	FA	49
50 6	CONTINUE	FA	50
51	IF (DMAX.LT.1.E-10) IFLG=1	FΑ	51
52	PR=IP(R)	FA	52
53	A(R,R)=D(PR)	FA	53
54	D(PR)=D(R)	FA	54
55 C		FA	55
56 C	STEP 5	FA	56
57 C		FA	57
58	IF (RP1.GT.N) GO TO 8	FA	58
59	ARJ=1./A(R,R)	FA	59
60	DO 7 I=RP1.N	FA	60
61	A(R,I)=D(I)*ARJ	FA	61
62 7	CONTINUE	FA FA	62 63
63 8	CONTINUE	FA	64
54	IF (IFLG.EQ.0) GO TO 9		

65	PRINT 10, R.DMAX	FA	65
66	IFLG=0	FA	66
67 9		FA	67
68	RETURN	FA	68
69 C		FA	69
70 1		, FA	70
71	END	FA	71-

FACTRS

PURPOSE

To call the appropriate subroutines for the LU decomposition of a matrix.

METHOD

The operation of FACTRS depends on the mode of storage of the matrix as determined by the value of ICASE (see COMMON/MATPAR/ in Section III). For ICASE = 1 subroutine FACTR is called at FS16 to factor the matrix. For ICASE = 2 FACTR is called for each of the NOP submatrices. If ICASE = 3 FACIO and LUNSCR are called at FS23 and FS24. FACIO reads the matrix from file IU1 and writes the result on file IU2. LUNSCR leaves the final result on file IU3.

For ICASE = 4 (symmetry, submatrices fit in core) or ICASE = 5 (symmetry, submatrices do not fit in core) the matrix elements on file IUl are written in a new order on file IU2 from FS29 to FS46. The sequence of data on file IUl is

> column 1 of submatrix 1 column 1 of submatrix 2 : column 1 of submatrix NOP column 2 of submatrix 1 : column 2 of submatrix NOP column 3 of submatrix 1 : column NPBLK of submatrix NOP

The matrices are written onto file IU2 in the sequence

column 1 of submatrix 1 column 2 of submatrix 1 :

```
column NPBLK of submatrix 1
column 1 of submatrix 2
.
```

column NPBLK of submatrix NOP

For ICASE = 4 each submatrix is then read into memory at FS58 and decomposed into LU factors by calling FACTR at FS60. The factored matrices are written to file IU3 at FS61.

For ICASE = 5 the matrices are transferred from file IU2 to IU1 at FS76 to FS77. Subroutine FACIO is then called to factor all of the NOP submatrices. The result is left on file IU2. LUNSCR reorders the rows of each matrix and leaves the result on IU3.

SYMBOL DICTIONARY

A	= array for matrix storage
I 2	= number of words in a block
ICOLS	= number of columns in a block
IP	= array for pivot element indices
IRI, IR2, IRR1, IRR2	= row indices for reordering columns
IU1, IU2, IU3, IU4	= file numbers
ΙX	= array of pivot element data
KA	= starting location of a submatrix in the array
NOP	= number of symmetric sections
NP	= number of equations for each symmetric section
	(order of submatrix)
NROW	= total number of equations (NP x NOP)

1		SUBROUTINE FACTRS (NP,NROW,A,IP,IX,IU1,IU2,IU3,IU4)	FS	1
2			FS	2
3		FACTRS, FOR SYMMETRIC STRUCTURE, TRANSFORMS SUBMATRICIES TO FORM	FS	3
4 5		MATRICIES OF THE SYMMETRIC MODES AND CALLS ROUTINE TO FACTOR	FS	4
6		MATRICIES. IF NO SYMMETRY, THE ROUTINE IS CALLED TO FACTOR THE COMPLETE MATRIX.	FS	5
7		COMPLETE MATRIX.	FS	6
8	C	COMPLEX A	FS	7
9		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	FS	8 9
10		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	FS	10
11		DIMENSION A(1), IP(NROW), IX(NROW)	FS	11
12		NOP=NROW/NP	FS	12
13		IF (ICASE.GT.2) GO TO 2	FS	13
14		DO 1 KK=1,NOP	FS	14
15		KA=(KK-1)•NP+1	FS	15
16	1	CALL FACTR (NP,A(KA),IP(KA),NROW)	FS	16
17	2	RETURN	FS	17
18 19		IF (ICASE.GT.3) GO TO 3	FS	18
20		FACTOR SUBMATRICIES, OR FACTOR COMPLETE MATRIX IF NO SYMMETRY	FS	19
21		EXISTS.	FS	20
22			FS FS	21 22
23	-	CALL FACIO (A,NROW,NOP,IX,IU1,IU2,IU3,IU4)	r S FS	22
24		CALL LUNSCR (A, NROW, NOP, IP, IX, IU2, IU3, IU4)	FS	24
25		RETURN	FS	25
26	С		FS	26
27		REWRITE THE MATRICES BY COLUMNS ON TAPE 13	FS	27
28			FS	28
29	3	I2=2*NPBLK*NROW	FS	29
30 31		REWIND IU2 DO 5 K=1,NOP	FS	30
32		REWIND IU1	FS	31
33		ICOLS=NPBLK	FS FS	32 33
34		IR2=K•NP	FS	34
35		IR1=IR2-NP+1	FS	35
36		DO 5 L=1,NBLOKS	FS	36
37		IF (NBLOKS.EQ.1.AND.K.GT.1) GO TO 4	FS	37
38		CALL BLCKIN (A, IU1, 1, I2, 1, 602)	FS	38
39		IF (L.EQ.NBLOKS) ICOLS=NLAST	FS	39
40 41	4	IRR1=IR1 IRR2=IR2	FS	40
42		DO 5 ICOLDX=1,ICOLS	FS FS	41 42
43		WRITE (IU2) (A(I),I=IRR1,IRR2)	FS	42 43
44		IRR1=IRR1+NROW	FS	44
45		IRR2=IRR2+NROW	FS	45
46	5	CONTINUE	FS	46
47		REWIND IU1	FS	47
48		REWIND IU2	FS	48
49		IF (ICASE.EQ.5) GO TO B	FS	49
50 51		REWIND IU3	FS	50
52		IRR1=NP NP DO 7 KK=1,NOP	FS	51
53		IR1=1-NP	FS FS	52 53
54		IR2=0	FS	54
55		DO 6 I=1,NP	FS	55
56		IR1=IR1+NP	FS	56
57		IR2=IR2+NP	FS	57
58	6	$\begin{array}{l} READ (IU2) (A(J), J=IR1, IR2) \\ MA (MM I) \\ MA (MM I) \\ MA (MM I) \\ MA (MM I) \\ MA (I) \\ MA (I)$	FS	58
59 60		$KA = (KK - 1) \cdot NP + 1$	FS	59
61		CALL FACTR (NP.A.IP(KA),NP) WRITE (IU3) (A(I),I=1,IRR1)	FS	60
62	7	CONTINUE	FS FS	61 62
63		REWIND IU2	FS	63
64		REWIND IU3	FS	64

65	RETURN	FS	65
66 8	I2=2*NPSYM*NP	FS	66
67	DO 10 KK=1,NOP	FS	67
68	J2=NPSYM	FS	68
69	DO 10 L=1,NBLSYM	EC	69
70	IF (L.EQ.NBLSYM) J2=NLSYM	, FS	70
73	IR1=1-NP	FS	71
72	IR2=0	F S F S	72
73	DO 9 J=1, J2	FS	_
74	IR1=IR1+NP		73
75	IR2=IR2+NP	FS	74
76 9	READ (IU2) (A(I),I=IR1,IR2)	FS	75
77 10	CALL BLCKOT (A, IU1, 1, I2, 1, 193)	FS	76
78	REWIND IU1	FS	77
79		FS	78
	CALL FACIO (A,NP,NOP,IX,IU1,IU2,IU3,IU4)	FS	79
80	CALL LUNSCR (A,NP,NOP,IP,IX,IU2,IU3,IU4)	FS	80
81	RETURN	FS	81
82	END	FS	82-

FBAR

PURPOSE

To compute the Sommerfeld attenuation function for Norton's asymptotic field approximations.

METHOD

The value returned for FBAR is

$$F(P) = 1 - j \sqrt{\pi P} \exp(-P) [1 - erf(j\sqrt{P})]$$

where erf(z) is the error function. If $|j\sqrt{P}| \leq 3$ the value of erf($j\sqrt{P}$) is computed from the series

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n+1}}{n! (2n+1)}$$

For $|j\sqrt{P}| > 3$, F(P) is evaluated from the first six terms of the asymptotic expansion

$$\sqrt{\pi} z \exp(z^2) (1 - \operatorname{erf}(z)) \approx 1 + \sum_{M=1}^{\infty} (-1)^M \frac{1 \cdot 3 \dots (2M-1)}{(2z^2)^M}$$

for $z \neq \infty$, $larg(z) < \frac{3\pi}{4}$

SYMBOL DICTIONARY

ACCS = relative convergence test value FJ = j = $\sqrt{-1}$ MINUS = 1 if Re(z) < 0 P = P POW = $(-1)^n z^{2n+1}/n!$ SMS = magnitude squared of series SP = $\sqrt{\pi}$ SUM = series value TERM = term in the series TMS = $i \text{TERM} i^2$ TOSP = $2/\sqrt{\pi}$ Z = $j\sqrt{P}$ ZS = z^2

.

FBAR

1	COMPLEX FUNCTION FBAR(P)	FR	1
2 C		FR	2
3 C	FBAR IS SOMMERFELD ATTENUATION FUNCTION FOR NUMERICAL DISTANCE P	FR	3
4 C		FR	4
5	COMPLEX 7,ZS,SUM,POW,TERM,P.FJ	FR	5
6	DIMENSION FJX(2)	FR	6
7	EQUIVALENCE (FJ,FJX)	FR	7
8	DATA TOSP/1.128379167/, ACCS/1.E-12/, SP/1.772453851/, FJX/0.,1./	FR	8
9	Z=FJ*CSQRT(P)	FR	9
10	IF (CABS(Z).GT.3.) GO TO 3	FR	10
11 C		₽R	٤ 1
12 C	SERIES EXPANSION	FR	12
13 C		FR	13
14	ZS=Z*Z	FR	14.
15	SUM=Z	FR	15
16	POW=Z	F.R	16
17	DO 1 I=1,100	FR	17
18	POW=-POW*ZS/FLOAT(I)	FR	18
19	TERM=POW/(2.*I+1.)	FR	19
20	SUM=SUM+TERM	FR	20
21	TMS=REAL(TERM*CONJG(TERM))	FR	21
22	SMS=REAL(SUM*CONJG(SUM))	FR	22
23	IF (IMS/SMS.LT.ACCS) GO TO 2	FR	23.
24 1	CONTINUE	FR	24
25 2	FBAR=1(1SUM*TOSP)*Z*CEXP(ZS)*SP	FR	25
26	RETURN	FR	25
27 C		FR	27
28 C	ASYMPTOTIC EXPANSION	FR	28
29 C		FR	29
30 3	IF (REAL(Z).GE.O.) GO TO 4	FR	30
31	MINUS=1	FR	31
32	Z=-Z	۶R	32
33	GO TO 5	FR	33
34 4	MINUS=0	FR	34
35 5	2S=.5/(Z•Z)	FR	35
36	SUM=(0,,0)	FR	36
37	TERM = (1., 0.)	FR	37
38	DO 6 I=1,6	FR	38
39	TERM=-TERM•(2.•I-1.)•ZS	۴R	39
40 6	SUM=SUM+TERM	FR	40
41	IF (MINUS.EQ.1) SUM≍SUM-2.*SP*Z*CEXP(Z*Z)	FR	41
42	FBAR=-SUM	FR	42
43	RETURN	FR	43
44	END	FR	44-

.

FBLOCK

PURPOSE

To set parameters for storage of the interaction matrix.

METHOD

FBLOCK sets values of the parameters ICASE through NLSYM in COMMON/MATPAR/. The input parameters NROW and NCOL are the number of rows and columns in the non-transposed matrix. IMAX is the number of matrix elements that can be stored in the array in COMMON/CMB/. If a NGF file will be written (WG card) then IRNGF complex locations are reserved for future use. If a NGF file has not been requested then IRNGF is zero.

If $(NROW)(NCOL) \leq IMAX - IRNGF$ the complete matrix can be stored in COMMON/CMB/. ICASE is then 1 for no symmetry or 2 for symmetry. If the structure has symmetry and one submatrix fits in core but not the complete matrix,

(NROW)(NCOL) > IMAX - IRNGF NROW² < IMAX - IRNGF,

then ICASE is 4.

If the matrix cannot fit in core for the LU decomposition then it is divided into blocks of rows (columns of the transposed matrix) for transfer between core and file storage. The blocks are made as large as possible so that one block fits into IMAX - IRNGF locations and two blocks fit into IMAX locations. Since two blocks are needed in core only during the Gauss elimination process this makes at least IRNGF locations available during the NGF solution.

CODING

FB10 - FB17	ICASE = 1 or 2
FB20 - FB32	ICASE = 3
FB34 - FB40	ICASE = 4 or 5, block parameters for whole matrix
FB42 - FB48	ICASE = 4, block parameters for submatrices
FB49 - FB58	ICASE = 5, block parameters for submatrices

FBLOCK

.

FB65 - FB71	S matrix for rotational symmetry (Equation III of Part I)
FB75 - FB88	S matrix for plane symmetry

ARG	$= 2\pi(I - I)(J - I)/NOP$
IMAX	= number of complex numbers that can be stored in COMMON/CMB/
IMX1	= IMAX - IRNGF
I PSYM	= parameter from COMMON/DATA/
IRNGF	<pre>= array storage reserved for NGF</pre>
КA	■ number of planes of symmetry
NCOL	= number of columns in matrix
NOP	= number of symmetric sections
NROW	= number of rows in matrix
PHAZ	$= 2\pi/\text{NOP}$

.

1	SUBROUTINE FBLOCK (NROW, NCOL, IMAX, IRNGF, IPSYM)	FB	1
2 C	FBLOCK SETS PARAMETERS FOR OUT-OF-CORE SOLUTION FOR THE PRIMARY	F8 F8	2 3
3 C	MATRIX (A)	rø FB	3 4
4	COMPLEX SSX, DETER		4 5
5	COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	FB	6
6	1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL		7
7	COMMON /SMAT/ SSX(16,16)	f B	
8	IMX1=IMAX-IRNGF	FB	8
9	IF (NROW*NCOL.GT.IMX1) GO TO 2	FB	9
10	NBLOKS=1	£ B	10
11	NPBLK=NROW	FB	11
12	NLAST=NROW	FØ	12
13	IMAT=NROW*NCOL	FB	13
14	IF (NROW.NE.NCOL) GO TO 1	FB	14
15	ICASE=1	F8	15
16	RETURN	FB	16
17 1	ICASE=2	FB	17
18	GO TO 5	FB	18
19 2	IF (NROW.NE.NCOL) GO TO 3	FB	19
20	ICASE=3	FB	20
21	NPBLK=IMAX/(2*NCOL)	FB	21
22	NPSYM=IMX1/NCOL	FB	22
23	IF (NPSYM.LT.NPBLK) NPBLK=NPSYM	FB	23
23	IF (NPBLK.LT.1) GO TO 12	FB	24
24	NBLOKS=(NROW-1)/NPBLK	FB	25
		FB	26
26	NLAST=NROW-NBLOKS*NPBLK	FB	27
27	NBLOKS=NBLOKS+1	FB	28
28	NBLSYM=NBLOKS		
29	NPSYM=NPBLK	FB	29
30	NLSYM=NLAST	FB	30
31	IMAT=NPBLK*NCOL	F B	31
32	PRINT 14, NBLOKS,NPBLK,NLAST	FB	32
33	GO TO 11	FB	33
34 3	NPBLK=IMAX/NCOL	FB	34
35	IF (NPBLK.LT.1) GO TO 12	FB	35
36	IF (NPBLK.GT.NROW) NPBLK=NROW	FB	36
37	NBLOKS=(NROW-1)/NPBLK	FB	37
38	NLAST=NROW-NBLOKS*NPBLK	FB	38
39	NBLOKS=NBLOKS+1	FB	39
40	PRINT 14, NBLOKS, NPBLK, NLAST	FB	40
41	IF (NROW+NROW.GT.IMX1) GO TO 4	FB	41
42	ICASE=4	FB	42
42	NBLSYM=1	FB	43
		FB	44
44	NPSYM=NROW	FB	45
45	NLSYM=NROW		
46	IMAT=NROW*NROW	F8 F8	46
47	PRINT 15		47
48	GO TO 5	FB	48
49 4	ICASE=5	FB	49
50	NPSYM=IMAX/(2*NROW)	FB	50
51	NBLSYM=IMX1/NROW	F B	51
52	IF (NBLSYM.LT.NPSYM) NPSYM=NBLSYM	F8	52
53	IF (NPSYM.LT.1) GO TO 12	F8	53
54	NBLSYM=(NROW-1)/NPSYM	FB	54
55	NLSYM=NROW-NBLSYM*NPSYM	FB	55
56	NBLSYM=NBLSYM+1	FB	56
57	PRINT 16, NBLSYM, NPSYM, NLSYM	FB	57
58	IMAT=NPSYM*NROW	FÐ	58
59 5	NOP=NCOL/NROW	F8	59
60	IF (NOP NROW, NE. NCOL) GO TO 13	FB	60
61	IF (IPSYM.GT.O) GO TO 7	FB	61
62 C	TI (TI DIMINITY OF CO.	FB	62
63 C	SET UP SSX MATRIX FOR ROTATIONAL SYMMETRY.	FB	63
64 C		fΒ	64

FBLOCK

65		PHAZ=6.2831853072/NOP	-	
66		DO 6 I=2,NOP	FB	65
67		DO 6 J=I,NOP	FB	66
68		ARG=PHAZ*FLOAT(I-1)*FLOAT(J-1)	FB	67
69		SSX(I_I)=CMPLY(COS(APC)_SIN(APC))	FB	68
70	6	SSX(J,I)=SSX(I,J)	FB	69
71		CO TO 11	FB	70
72	С		FB	71
73	С	SET UP SSX MATRIX FOR PLANE SYMMETRY	FB	72
74	С		FB	73
75	7	КК=1	FB	74
76		SSX(1,1)=(10.)	FB	75
77		IF ((NOP.EQ.2).OR.(NOP.EQ.4).OR.(NOP.EQ.8)) GO TO 8	F B	76
78		STOP	FB	77
79	8	KA=NOP/2	FB Fð	78
80		IF (NOP.EQ.8) KA=3	FB	79
81		DO 10 K=1,KA	гB FB	80 81
82		DO 9 I=1,KK	r B FB	82
83		DO 9 J=1,KK	FB	83
84		DETER=SSX(I,J)	FB	84
85		SSX(I,J+KK)=DETER	FB	85
86		SSX(I+KK,J+KK)=-DETER	FB	86
87	9	SSX(I+KK,J)=DETER	FB	87
88	10	Кк=КК*2	FB	88
89	11	RETURN	FB	89
90	12	PRINT 17, NROW, NCOL	FB	90
91		STOP	FB	91
92	13	PRINT 18, NROW, NCOL	FB	92
93		STOP	FB	93
94	С		FB	94
95	14	FORMAT (//35H MATRIX FILE STORAGE - NO. BLOCKS=, 15, 19H COLUMNS PE		95
96		1R BLOCK=, I5, 23H COLUMNS IN LAST BLOCK=, I5)	FΒ	96
97	15	FORMAT (25H SUBMATRICIES FIT IN CORE)	FΒ	97
98	16	FORMAT (38H SUBMATRIX PARTITIONING - NO. BLOCKS=, 15, 19H COLUMNS P		98
99		1ER BLOCK=, I5, 23H COLUMNS IN LAST BLOCK=, I5)	FB	99
100	17	FORMAT (40H ERROR - INSUFFICIENT STORAGE FOR MATRIX,215)		100
101	18	FORMAT (28H SYMMETRY ERROR - NROW, NCOL=, 215)		101
102		END		102-
			-	. – –

FBNGF

FBNGF

PURPOSE

To set parameters for storage of the matrices B, C and D for the NGF solution.

METHOD

The modes of matrix storage for the NGF solution are described in Section VIII. FBNGF choses the smallest ICASX (1 through 4) possible given the size of the matrices A, B, C and D and the space available in the array CM in COMMON/CMB/. If B, C and D must be divided into blocks (ICASX = 3 or 4) the blocks are chosen are large as possible to minimize the number of input and output requests. Parameters specifying the number and size of blocks are stored in COMMON/MATPAR/ (see Section III).

FBNGF also sets the locations in CM at which storage of B, C and D start. For example, CM(IC11) is passed from the main program to subroutines CMNGF and FACGF as the starting location of array C.

1811	= location in CM at which storage of B starts			
IC11	= location in CM at which storage of C starts			
ID11	= location in CM at which storage of D starts			
IMAT	= number of complex numbers in A _F			
IR	= space available (complex numbers) in CM when A_{F} is not being			
	used.			
IRESRV	= total length of CM			
IRESX	= space availabe in CM when A _F is being used			
[X1]	location in CM at which storage of B starts when $A^{-1}B$ is			
	computed (A $_{\rm F}$ occupies space in CM)			
NBCD	= number of complex numbers in B, C and D combined			
NBLN	= number of complex numbers in B or C			
NDLN	= length of D			
NEQ	= number of rows in B, columns in C			
NEQ2	= number of columns in B or D, rows in C or D			

FBNGF

1		SUBROUTINE FBNGF (NEQ, NEQ2, IRESRV, IB11, IC11, ID11, IX11)	۴N	
	С	FUNCE SETS THE BLOCKING PARAMETERS FOR THE B. C. AND D ARRAYS FOR	FN	1 2
	С	OUT-OF-CORE STORAGE,	CAL	3
4		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, J	. FN	4
5		ICASA, NEBA, NEBA, NEBA, NEBE, NEBE, NEBE	FN	5
6		IRESX=IRESRV-IMAT	FN	6
7		NBLN=NEQ*NEQ2	FN	7
8		NDLN=NEQ2 NEQ2	FN	8
9		NBCD=2*NBLN+NDLN	FΝ	9
10 11		IF (NBCD.GT.IRESX) GO TO 1	ΕN	10
12		ICASX=1 IB11=IMAT+1	ΕN	11
13		GO TO 2	FΝ	12
14	1	IF (ICASE.LT.3) GO TO 3	FN	13
15	•	IF (NBCD.GT.IRESRV.OR.NBLN.GT.IRESX) GO TO 3	FΝ	14
16		ICASX=2	FΝ	15
17		IB11=1	FN	16
18	2	NBBX=1	FN	17
19		NPBX=NEQ	FN	18
20		NLBX=NEQ	FN	19
21		NBBL=1	FN	20
22		NPBL=NEQ2	FN	21
23		NLBL=NEQ2	FN	22
24		GO TO 5	FN FN	23 24
25	3	IR=IRESRV	FN	∠4 25
26		IF (ICASE.LT.3) IR=IRESX	FN	26
27		ICASX=3	FN	27
28		IF (NDLN.GT.IR) ICASX=4	FN	28
29		NBCD=2*NEQ+NEQ2	FN	29
30		NPBL=IR/NBCD	FN	30
31		NLBL=IR/(2*NEQ2)	FN	31
32		IF (NLBL.LT.NPBL) NPBL=NLBL	ΕN	32
33		IF (ICASE.LT.3) GO TO 4	FN	33
34		NLBL=IRESX/NEQ	FN	34
35		IF (NLBL.LT.NPBL) NPBL=NLBL	FN	35
36	4	IF (NPBL.LT.1) GO TO 6	FΝ	36
37		NBBL=(NEQ2-1)/NPBL	FΝ	37
38 39			FN	38
40		NBBL=NBBL+1 NBLN=NEQ•NPBL	FΝ	39
41		IR=IR-NBLN	FN	40
42		NPBX=IR/NEQ2	FΝ	41
43		IF (NPBX.GT.NEQ) NPBX=NEQ	FN	42
44		NBBX = (NEQ-1)/NPBX	FN	43
45		NLBX=NEQ-NB8X*NPBX	EN	44
46		NBBX=NBBX+1	FN	45
47		IB11=1	FN FN	46 47
48		IF (ICASE.LT.3) IB11=IMAT+1	FN	48
49	5	IC11=IB11+NBLN	FN	49
50		ID11=IC11+NBLN	FN	50
51		IX11=IMAT+1	FN	51
52		PRINT 11, NEQ2	FN	52
53		IF (ICASX.EQ.1) RETURN	FN	53
54		PRINT B, ICASX	EN	54
55		PRINT 9, NBBX,NPBX,NLBX	FN	55
56		PRINT 10, NBBL,NPBL,NLBL	FN	56
57	c .	RETURN	FN	57
58 (0	PRINT 7, IRESRV, IMAT, NEQ, NEQ2	FN	58
59	c	STOP	FN	59
60 (61)			FN	60
62		FORMAT (55H ERROR - INSUFFICIENT STORAGE FOR INTERACTION MATRICIES		61
63 8			FN	62
64 9		FORMAT (48H FILE STORAGE FOR NEW MATRIX SECTIONS - ICASX =, I2) FORMAT (19H B FILLED BY ROWS -, 15X, 12HNO. BLOCKS =, I3, 3X, 16HROWS P	FN	63
			ч 1	64

FBNGF

65		1ER BLOCK =, I3, 3X, 20HROWS IN LAST BLOCK =, I3)	C 1.1	~ ~
66	10	FORMAT (32H B BY COLUMNS C AND D BY DOWN OF ADDRESS	FN	63
67		FORMAT (32H B BY COLUMNS, C AND D BY ROWS -, 2X, 12HNO. BLOCKS =, I3,	FN	66
.		14X,15HR/C PER BLOCK =, I3,4X,19HR/C IN LAST BLOCK =, I3)	ΕN	67
68 69	11	FORMAT (//.35H N.G.F NUMBER OF NEW UNKNOWNS IS, I4)	FN	
03		END	FN	69-

FFLD

PURPOSE

To calculate the radiated electric field due to the currents on wires and surfaces in free space or over ground. The range factor $\exp(-jkr_0)/(r_0/\lambda)$ is omitted.

METHOD

Equation (126) of Part I is used to evaluate the radiated field of wires and surfaces. The surface part of the equation is evaluated in subroutine FFLDS, however. For wires, the field equation is

$$\overline{E}(\overline{r}_{0}) = \frac{j\eta \exp(-jkr_{0})}{4\pi r_{0}/\lambda} (\hat{k}\hat{k} - \overline{\overline{I}}) \cdot \overline{F}(\overline{r}_{0})$$
$$\overline{F}(\overline{r}_{0}) = 2\pi \int_{L} \exp(j\overline{k} \cdot \overline{r}) [\overline{I}(s)/\lambda] ds/\lambda$$

where

$$r_{0} = |\overline{r}_{0}|$$

$$\hat{k} = \overline{r}_{0}/|\overline{r}_{0}|$$

$$k = 2\pi/\lambda$$

$$\overline{k} = k\hat{k}$$

$$\overline{I}(s) = \text{current on the wire at s}$$

$$\overline{\overline{I}} = \text{identity dyad}$$

$$L = \text{contour of the wire}$$

$$\overline{r} = \text{position of the point at s on the wire}$$

The dot product with the dyad $\hat{k}\hat{k} - \overline{\overline{I}}$ results in the component of \overline{F} transverse to \hat{k} . This is accomplished in the code by computing the dot products with the unit vectors $\hat{\theta}$ and $\hat{\phi}$, normal to \hat{k} .

For a wire structure consisting of N straight segments, \bar{r} on segment i is replaced by

$$\bar{r} = \bar{r}_i + \lambda t \hat{u}_i$$
,

where

 \overline{r}_i = location of the center of segment i \overline{u}_i = unit vector in the direction of segment i Then, \overline{F} is evaluated as

$$\overline{F(r_0)} = \sum_{i=1}^{N} \exp(j\overline{k} \cdot \overline{r_i}) \overline{Q_i}$$
$$Q_i = 2\pi \hat{u}_i \int_{-\Delta_i/2}^{\Delta_i/2} \exp[j2\pi t(\hat{k} \cdot \hat{u_i})] I_i(t)/\lambda dt$$

where Δ_i is the length of segment i normalized to λ . With

$$I_{i}(t)/\lambda = A_{i} + B_{i} \sin (2\pi t) + C_{i} \cos (2\pi t)$$

the integral can be evaluated as

$$\overline{Q}_{i} = \hat{u}_{i} \left\{ A_{i} \frac{2 \sin (\pi w_{i} \Delta_{i})}{w_{i}} - j B_{i} \left[\frac{\sin [\pi (1 - w_{i}) \Delta_{i}]}{(1 - w_{i})} - \frac{\sin [\pi (1 + w_{i}) \Delta_{i}]}{(1 + w_{i})} \right] + C_{i} \left[\frac{\sin [\pi (1 - w_{i}) \Delta_{i}]}{(1 - w_{i})} + \frac{\sin [\pi (1 + w_{i}) \Delta_{i}]}{(1 + w_{i})} \right] \right\},$$

where $w_i = -\hat{k} \cdot \hat{u}_i$.

The effect of a ground is included by computing the field of the image of each segment and modifying it by the Fresnel reflection coefficients. The coding here differs from section II-4 of Part I in some respects. Rather than reflecting each segment in the ground plane, the direction of observation, \hat{k} , is reflected for the image calculation. Thus, the sign of the z component of \hat{k} is changed at the start of the image calculation. The z component of the image field must also be changed in sign at the end of the calculation. Also, the change in sign of the image field due to the change in sign of charge on the image is combined with the reflection coefficients. Thus, the reflection coefficients are the negative of those in Part I.

The code allows for a change in ground height and electrical parameters at a fixed radial distance from the origin (circular cliff) or at a fixed distance in x (linear cliff). In these cases, the reflection point of the ray from the center of each segment is computed, and the reflection coefficients and phase lag are computed for the appropriate ground. Effects from the region of change, such as diffraction from the edge, are not included,

-143-

FFLD

however. A radial wire ground screen may also be included by the reflection coefficient approximation described in section II-4 of Part I.

~

CODING

FF30 - FF164	Calculation of field due to segments.
FF34 - FF164	Loop over direct and image fields.
FF38 - FF63	Reflection coefficients computed.
FF64	\hat{k} reflected in ground for image.
FF65 - FF70	Direct fields saved, and CIX, CIY, CIZ initialized before
	image calculation.
FF75 – FF96	Field of segment I computed.
FF102 - FF104	Summation of fields for direct field or uniform ground.
FF110 - FF149	Appropriate reflection coefficient determined and field
	summed for reflected field from two-medium ground or
	radial-wire ground screen.
FF156 - FF159	Image field multiplied by reflection coefficients for
	uniform ground and added to direct field.
FF161 - FF163	Reflected field added to direct field for two-medium
	ground or radial wire ground.
FF166 - FF167	Dot products of \overline{F} with $\hat{ heta}$ and $\hat{\phi}$ for wires only.
FF169 - FF208	Calculation of field due to surface patches.
FF177 - FF203	Loop over direct and image fields.
FF179	k reflected for image.
FF180	FFLDS calculates field.
FF186 - FF202	Field multiplied by reflection coefficients for uniform
	ground only.

A	= 2 sin $(\pi w_i \Delta_i)/w_i$ (a series is used for small w_i)
ARG	$= \overline{k} \cdot \overline{r}_{i}$
В	= coefficient of B_i in \overline{Q}_i
BOO	= sin $[\pi(1 - w_i)\Delta_i]/[\pi(1 - w_i)\Delta_i]$
BOT	$= \pi (1 - w_i) \Delta_i$
С	= coefficient of C_i in \overline{Q}_i
CAB	
SAB	= x, y, z components of û _i
SALP]	

CCX = variables for summation of x, y, and z components of \overline{F} CCY CCZ $= (\overline{F} \cdot \hat{\phi})(R_v - R_H)$ CDP CIX = variables for summation of x, y, and z components of \overline{F} CIY CIZ CONST = CONSX = $-j\eta/4\pi$ D = distance of ray reflection point from origin = phase increment due to change in ground level DARG = πΔ_i \mathbf{EL} = ϕ component of $(r_0/\lambda) \exp(jkr_0) \vec{E}(\vec{r}_0)$ EPH = θ component of $(r_0/\lambda)\exp(jkr_0) \overline{E}(\overline{r_0})$ ETH $= \eta = \sqrt{\mu/\epsilon}$ ETA EΧ = $(r_0/\lambda)\exp(jkr_0) \overline{E}(\overline{r_0})$ for patches EΥ ΕZ = Q₁ EXA GX = $(r_0/\lambda)exp(jkr_0) \overline{E(r_0)}$ for direct and reflected fields of patches $\mathbf{G}\mathbf{Y}$ GΖ Ι = segment number OMEGA = w. PHI = Φ PHX, PHY = x and y components of $\hat{\phi}$ ΡI = π RFL = ±1 for direct or image field of patch = imaginary part of Q₁ RI ROX = x, y, and z components of \hat{k} ROY ROZ = saved value of ROZ ROZS = real part of Q RR RRH $= -R_{H}$ $= -R_{H}$ for first ground medium RRH1 = $-R_{\rm H}$ for second ground medium RRH2

FFLD

RRV	$= -R_{V}$
RRV1	= -R for first ground medium
RRV2	= -R _V for second ground medium
RRZ	= z component of \hat{k}
SILL	$= \pi w_i \Delta_i$
THET	= θ (angle from vertical to \hat{k})
THX	
THY	$= \hat{\theta}$
THZ J	
TIX	
TIY	= Q for image in ground
TIZ J	
тоо	$= \sin[\pi(1 + w_i)\Delta_i] / [\pi(1 + w_i)\Delta_i]$
тор	$= \pi(1 + w_i)\Delta_i$
TP	$= 2\pi$
TTHET	$= \tan \theta$
ZRATI	= $[\varepsilon_r - j\sigma/(\omega\varepsilon_0)]^{-1/2}$ ε_r, σ = ground parameters
ZRSIN	= $[1 - (ZRATI)^2 \sin^2 \theta]^{1/2}$
ZSCRN	= surface impedance of ground with radial wire ground screen

CONSTANTS

 $-29.97922085 = -jn/(4\pi)$ 3.141592654 = π 376.73 = n6.283185308 = 2π

		FFLD
	FF	1
	FF	2
	FF	3
	FF	4
	FF	5
	FF	6
 ~		

				1
1	с	SUBROUTINE FFLD (THET, PHI, ETH, EPH)	FF	1
	c		FF	2
		FFLD CALCULATES THE FAR ZONE RADIATED ELECTRIC FIELDS,	FF	3
	C	THE FACTOR EXP(J*K*R)/(R/LAMDA) NOT INCLUDED	FF	4
	¢		FF	5
6		COMPLEX CIX,CIY,CIZ,EXA,ETH,EPH,CONST,CCX,CCY,CCZ,CDP,CUR		6
7		COMPLEX ZRAIL, ZRSIN, RRV, RRH, RRV1, RRH1 RRV2 RRH2 704TT2 TTV TTV TTV	FF	7
8		TITIZSCRIV, CA, CT, CZ, GA, GY, GZ, FRATI	C C	8
9		COMMON /DATA/ LD.N1.N2.N.NP.M1.M2.M.MP.X(300),Y(300),Z(300),SI(300		9
10		-17,01(300) (ALF(300), BET(300), ICON1(300), ICON2(300), ITAC(300), ICON2(F F	10
11		2500), WCAM, 1PSTM	FF	11
12		COMMON /ANGL/ SALP(300)	6.6	12
13		COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300	FF	13
14		1), COK(900)	C C	14
15		COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR,	FF	15
16		ITHERF, II, IZ	FF	16
17		DIMENSION CAB(1), SAB(1), CONSX(2)	FF	17
18		EQUIVALENCE (CAB,ALP), (SAB,BET), (CONST,CONSX)	FF	18
19		DATA PI, TP, ETA/3.141592654, 6.283185308, 376.73/	FF	19
20		DATA CONSX/0.,-29.97922085/	FF	20
21		PHX=-SIN(PHI)	FF	21
22		PHY=COS(PHI)	FF	22
23		ROZ=COS(THET)	FF	23
24		ROZS=ROZ	F F	24
25		THX=ROZ*PHY	FF	25
26		THY≈-ROZ •PHX	FF	26
27		THZ=-SIN(THET)	FF	27
28		ROX=-THZ • PHY	FF	28
29		ROY=THZ +PHX	FF	29
30		IF (N.EQ.O) GO TO 20	FF	30
31			FF	31
32	С	LOOP FOR STRUCTURE IMAGE IF ANY	FF	32
33	С		FF	33
34		DO 19 K=1,KSYMP	FF	34
35	С		FF	35
36	С	CALCULATION OF REFLECTION COEFFECIENTS	FF	36
37	С		FF	37
38		IF (K.EQ.1) GO TO 4	FF	38
39		IF (IPERF.NE.1) GO TO 1	FF	39
40			FF	40
41		FOR PERFECT GROUND	FF	41
42	C		FF	42
43		RRV=-(1.,0.)	F۶	43
44		RRH=-(1.,0.)	FF	44
45		GO TO 2	FF	45
46			FF	46
47		FOR INFINITE PLANAR GROUND	F۴	47
48			FF	48
49	1	ZRSIN=CSQRT(1ZRATI*ZRATI*THZ*THZ)	FF	49
50		RRV=-(ROZ-ZRATI•ZRSIN)/(ROZ+ZRATI•ZRSIN)	FF	50
51		RRH=(ZRATI*ROZ-ZRSIN)/(ZRATI*ROZ+ZRSIN)	FF	51
52		IF (IFAR.LE.1) GO TO 3	FF	52
53			FF	53
	C	FOR THE CLIFF PROBLEM, TWO REFLCTION COEFFICIENTS CALCULATED	FF	54
55	С		FF	55
56		RRV 1=RRV	FF	56 57
57			FF	57
58		TTHET=TAN(THET)	F F F F	58 50
59		IF (IFAR.EQ.4) GO TO 3 TOSTU-CODT(3) $TOSTU-CODT(3)$	FF	59 60
60		ZRSIN=CSQRT(1ZRATI2*ZRATI2*THZ*THZ) RRV2=-(ROZ-ZRATI2*ZRSIN)/(ROZ+ZRATI2*ZRSIN)	FF	61
61		RRH2=(RUZ=ZRATI2*ZRSIN)/(RUZ+ZRATI2*ZRSIN) RRH2=(ZRATI2*ROZ-ZRSIN)/(ZRATI2*ROZ+ZRSIN)	FF	62
62 63		$DARG = -TP + 2 \cdot CH + ROZ$	FF	63
63 64	3	ROZ=-ROZ	FF	64
04	2			

FF!	LD
-----	----

65	CCX=CIX	FF 65
66	CCY=CIY	FF 66
67	CCZ=CIZ	FF 67
68 4	CIX=(0.,0.)	FF 68
69	CIY=(0.,0.)	FF 69
70	CIZ=(0.,0.)	″ FF 70
71 C		FF 71
72 C	LOOP OVER STRUCTURE SEGMENTS	FF 72
73 C		FF 73
74	DO 17 I=1,N	FF 74
75	OMEGA=-(ROX*CAB(I)+ROY*SAB(I)+ROZ*SALP(I))	FF 75
76	EL=PI•SI(I)	FF 76
77	SILL=OMEGA*EL	FF 77
78	TOP≈EL+SILL	FF 78
79	BOT=EL-SILL	FF 79
80	IF (ABS(OMEGA).LT.1.E-7) GO TO 5	FF 80
81	A=2.*SIN(SILL)/OMEGA	
82	GO TO 6	FF 81 FF 82
83 5	A=(2OMEGA*OMEGA*EL*EL/3.)*EL	
84 6	IF $(ABS(TOP),LT,1,E-7)$ GO TO 7	FF 83
85	TOO=SIN(TOP)/TOP	FF 84
86	GO TO 8	FF 85
87 7	$TOO = 1 TOP \cdot TOP / 6.$	FF 86
88 8	IF $(ABS(BOT), LT, 1, E-7)$ GO TO 9	FF 87
89		FF 88
	BOO=SIN(BOT)/BOT	FF 89
90		FF 90
91 9	B00=1B0T*B0T/6.	FF 91
92 10	B=EL*(B00-T00)	FF 92
93	C=EL*(B00+T00)	FF 93
94	RR=A*AIR(I)+B*BII(I)+C*CIR(I)	FF 94
95	RI = A * AII(I) - B * BIR(I) + C * CII(I)	FF 95
96	ARG=TP*(X(I)*ROX+Y(I)*ROY+Z(I)*ROZ)	FF 96
97	IF (K.EQ.2.AND.IFAR.GE.2) GO TO 11	FF 97
98	EXA=CMPLX(COS(ARG),SIN(ARG))*CMPLX(RR,RI)	FF 98
99 C		FF 99
100 C	SUMMATION FOR FAR FIELD INTEGRAL	FF 100
101 C		FF 101
102	CIX=CIX+EXA+CAB(I)	FF 102
103	CIY=CIY+EXA*SAB(I)	FF 103
104	CIZ=CIZ+EXA*SALP(I)	FF 104
105	GO TO 17	FF 105
106 C		FF 106
107 C	CALCULATION OF IMAGE CONTRIBUTION IN CLIFF AND GROUND SCREEN	FF 107
108 C	PROBLEMS.	FF 108
109 C		FF 109
110 11	DR=Z(I) *TTHET	FF 110
111 C		FF 111
112 C	SPECULAR POINT DISTANCE	FF 112
113 C		FF 113
114	D=DR•PHY+X(I)	FF 114
115	IF (IFAR.EQ.2) GO TO 13	FF 114
115	D=SQRT(D*D+(Y(I)-DR*PHX)**2)	FF 116
117	IF (IFAR.EQ.3) GO TO 13	
118	IF ((SCRWL-D).LT.O.) GO TO 12	FF 117 FF 118
119 C	A (Count Dylendry of to 12	FF 118 FF 119
	RADIAL WIRE CROWN SCREEN RELECTION COFFEETENT	
120 C 121 C	RADIAL WIRE GROUND SCREEN REFLECTION COEFFICIENT	FF 120
		FF 121
122	D=D+T2	FF 122
123	ZSCRN=T1+D+ALOG(D/T2)	FF 123
124	ZSCRN=(ZSCRN*ZRATI)/(ETA*ZRATI+ZSCRN)	FF 124
125	ZRSIN=CSQRT(1ZSCRN*ZSCRN*THZ*THZ)	FF 125
126	RRV=(ROZ+ZSCRN*ZRSIN)/(-ROZ+ZSCRN*ZRSIN)	FF 126
127	RRH=(ZSCRN*ROZ+ZRSIN)/(ZSCRN*ROZ-ZRSIN)	FF 127
128	GO TO 16	FF 128

		r r L D
129 12	IF (IFAR.EQ.4) GO TO 14	
130	IF (IFAR.EQ.5) D=DR•PHY+X(I)	FF 129
131 13	IF ((CL-D).LE.O.) GO TO 15	FF 130
132 14	RRV=RRV1	FF 131
133	RRH=RRH1	FF 132
134	GO TO 16	FF 133
135 15	•	FF 134
136	RRV=RRV2	FF 135
	RRH=RRH2	
137	ARG=ARG+DARG	FF 136
138 16	EXA=CMPLX(COS(ARG),SIN(ARG)) • CMPLX(RR,RI)	FF 137
139 C		FF 138
140 C	CONTRIBUTION OF FACH THACE SECURIT HEREES	FF 139
141 C	CONTRIBUTION OF EACH IMAGE SEGMENT MODIFIED BY REFLECTION COEF.	FF 140
142 C	FOR CLIFF AND GROUND SCREEN PROBLEMS	FF 141
		FF 142
143	TIX=EXA*CAB(I)	FF 143
144	TIY=EXA•SAB(I)	FF 144
145	TIZ=EXA+SALP(I)	
146	CDP=(TIX*PHX+TIY*PHY)*(RRH-RRV)	FF 145
147	CIX=CIX+TIX*RRV+CDP*PHX	FF 146
148	CIY=CIY+TIY*RRV+CDP*PHY	FF 147
149		FF 148
	CIZ=CIZ-TIZ*RRY	FF 149
150 17	CONTINUE	FF 150
151	IF (K.EQ.1) GO TO 19	FF 151
152	IF (IFAR.GE.2) GO TO 18	FF 152
153 C		
154 C	CALCULATION OF CONTRIBUTION OF STRUCTURE IMAGE FOR INFINITE GROUND	FF 153
155 C	STRUCTURE IMAGE FOR INFINITE GROUND	
156		FF 155
	CDP=(CIX • PHX+CIY • PHY) • (RRH-RRV)	FF 156
157	CIX=CCX+CIX*RRV+CDP*PHX	FF 157
158	CIY=CCY+CIY*RRV+CDP*PHY	FF 158
159	CIZ=CCZ-CIZ*RRV	FF 159
160	GO TO 19	FF 160
161 18	CIX=CIX+CCX	FF 161
162	CIY=CIY+CCY	
163		FF 162
-	CIZ=CIZ+CCZ	FF 163
164 19	CONTINUE	FF 164
165	IF (M.GT.0) GO TO 21	FF 165
166	ETH=(CIX*THX+CIY*THY+CIZ*THZ)*CONST	FF 166
167	EPH=(CIX*PHX+CIY*PHY)*CONST	FF 167
168	RETURN	FF 168
169 20	CIX=(0.,0.)	FF 169
170	CIY = (0., 0.)	FF 170
171	CIZ=(0.,0.)	FF 171
172 21	ROZ=ROZS	FF 172
173 C		FF 173
174 C	ELECTRIC FIELD COMPONENTS	FF 174
175 C		FF 175
176	RFL=-1.	FF 176
177	DO 25 IP=1.KSYMP	FF 177
178	RFL=-RFL	FF 178
179		FF 179
180	CALL FFLDS (ROX, ROY, RRZ, CUR(N+1), GX, GY, GZ)	FF 180
181	IF (IP.EQ.2) GO TO 22	FF 181
182	EX=GX	FF 182
183	EY=GY	FF 183
184	EZ=GZ	FF 184
185	GO TO 25	FF 185
186 22	IF (IPERF.NE.1) GO TO 23	FF 186
187	GX = -GX	FF 187
		FF 188
188	GY=−GY	FF 189
189	GZ=-GZ	
190		FF 190
191 23	RRV=CSQRT(1ZRATI*ZRATI*THZ*THZ)	FF 191
192	RRH=ZRATI*ROZ	FF 192

FFLD

193	RRH=(RRH-RRV)/(RRH+RRV)	F F	193
194	RRV=ZRATI*RRV	FF	194
195	RRV=-(ROZ-RRV)/(ROZ+RRV)		195
196	ETH=(GX*PHX+GY*PHY)*(RRH-RRV)		195
197	GX=GX*RRV+ETH*PHX		197
198	GY=GY*RRV+ETH*PHY		198
199	GZ=GZ*RRV		199
200 24	EX=EX+GX		200
201	EY=EY+GY		201
202	EZ=EZ-GZ		202
203 25	CONTINUE		203
204	EX=EX+CIX*CONST		204
205	EY=EY+CIY*CONST		205
206	EZ=EZ+CIZ*CONST		206
207	ETH=EX*THX+EY*THY+EZ*THZ		207
208	EPH=EX*PHX+EY*PHY		208
209	RETURN		209
210	END	FF	210-

£

FFLDS

PURPOSE

To calculate the x, y, z components of the far electric field due to surface currents. The term $\exp(-jkr_0)/(r_0/\lambda)$ is omitted.

METHOD

The field is computed using the surface portion of equation (126) in Part I. With lengths normalized to the wavelength, the equation is

$$\overline{E}(\overline{r}_{0}) = \frac{jn}{2} \frac{\exp(-jkr_{0})}{r_{0}/\lambda} (\hat{k}\hat{k} - \overline{\overline{I}}) \cdot \int_{S} \overline{J}_{S}(\overline{r}) \exp(j\overline{k} \cdot \overline{r}) dA/\lambda^{2},$$

where

$$r_{0} = |r_{0}|$$

$$\hat{k} = r_{0}/|r_{0}|$$

$$k = 2\pi/\lambda$$

$$\vec{k} = k\hat{k}$$

$$\vec{J}_{S} = surface current on surface S$$

$$\vec{\overline{I}} = identity dyad$$

The dot product with the dyad $\hat{k}\hat{k} - \bar{l}$ results in the component of the integral

$$\overline{F}(\overline{r}_0) = \int_{S} \overline{J}_{S}(\overline{r}) \exp(j\overline{k} \cdot \overline{r}) dA/\lambda^2$$

transverse to \hat{k} . The integral is evaluated by summation over the patches with the current assumed constant over each patch.

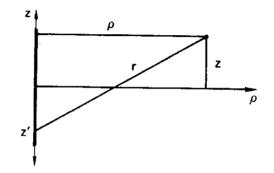
ARG =
$$\overline{k} \cdot \overline{r}_{i}$$
, \overline{r}_{i} = center of patch I
CONS = CONSX = $jn/2$
CT = $exp(j\overline{k} \cdot \overline{r}_{i}) dA/\lambda^{2}$ at FL18
= $\hat{k} \cdot \overline{F(r_{0})}$ at FL24
EX
EY
EX
EY
= x, y, z components of $\overline{F(r_{0})}$ at FL22
EZ
= $(r_{0}/\lambda)exp(jkr_{0})\overline{E(r_{0})}$ at FL27
I = array location of patch data
J = patch number
K = current array index

 $\begin{array}{l} \begin{array}{c} \text{ROX} \\ \text{ROY} \\ \text{ROZ} \end{array} \\ = x, y, z \text{ components of } \hat{k} \\ \text{ROZ} \end{array} \\ \begin{array}{c} \text{S(I)} = (\text{area of patch I})/\lambda^2 \\ \text{SCUR} = \text{array containing surface current components} \\ \text{TPI} = 2\pi \\ \begin{array}{c} \text{XS} \\ \text{YS} \\ \text{YS} \\ \text{ZS} \end{array} \\ \end{array} \\ = \text{arrays containing center point coordinates of patches normalized} \\ \text{to wavelength.} \end{array}$

CODE LISTING

1		SUBROUTINE FFLDS (ROX,ROY,ROZ,SCUR,EX,EY,EZ)	۴L	1
2	с	CALCULATES THE XYZ COMPONENTS OF THE ELECTRIC FIELD DUE TO	FL	2
3	С	SURFACE CURRENTS	FL	3
4		COMPLEX CT, CONS, SCUR, EX, EY, EZ	FL	4
5		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	FL	5
6		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(FL	6
7		2300), WLAM, IPSYM	FL	7
8		DIMENSION XS(1), YS(1), ZS(1), S(1), SCUR(1), CONSX(2)	FL	8
9		EQUIVALENCE (XS,X), (YS,Y), (ZS,Z), (S,BI), (CONS,CONSX)	FL	9
10		DATA TPI/6.283185308/,CONSX/0.,188.365/	FL	10
11		EX=(0.,0.)	FL	11
12		EY=(0.,0.)	FL	12
13		EZ=(0.,0.)	FL	13
14		I=LD+1	FL	14
15		DO 1 J≃1,M	FL	15
16		I=I-1	FL	16
17		ARG=TPI*(ROX*XS(I)+ROY*YS(I)+ROZ*ZS(I))	FL	17
18	i	CT=CMPLX(COS(ARG)*S(I),SIN(ARG)*S(I))	FL	18
19	I.	K=3*J	FL	19
20	1	EX=EX+SCUR(K-2) CT	FL	20
21		EY=EY+SCUR(K-1)+CT	FL	21
22	<u>-</u>	EZ=EZ+SCUR(K)*CT	FL	22
23	5-1	CONTINUE	FL	23
24	ŀ	CT=ROX*EX+ROY*EY+ROZ*EZ	FL	24
25	j i	EX=CONS*(CT*ROX-EX)	FL	25
26	ć	EY=CONS*(CT*ROY-EY)	FL	26
27	7	EZ≖CONS*(CT*ROZ-EZ)	FL	27
28	3	RETURN	FL	28
29	•	END	FL	29-

_


 \underline{GF}

PURPOSE

To supply values of the integrated function exp(jkr)/(kr) to the numerical integration routine INTX.

METHOD

The geometry parameters for integration over a segment are shown in the following diagram.

in which

$$r(z') = [\rho^2 + (z' - z)^2]^{1/2}$$
.

If the field point (ρ,z) is not on the source segment, the integrand value is

$$G(z') = \frac{\exp[jkr(z')]}{kr(z')} .$$

If the field point is on the source segment ($\rho = 0$, z = 0), the integrand value is

$$G(z') = \frac{\exp[jkr(z')] - 1}{kr(z')}$$
.

In the latter case, if kr is less than 0.2, then (cos kr)/kr is evaluated by the first three terms of its Taylor's series to reduce numerical error.

 $RKB2 = (k\rho)^{2}$ SI = imaginary part of G(z') SIN = external function (sine) SQRT = external function (square root) ZDK = kz' - kz ZK = kz' ZPK = kz

CONSTANTS

```
-1.38888889E-3
4.166666667E-2
0.5
```

CODE LISTING

1		SUBROUTINE GF (ZK,CO,SI)	GF	1
2 (0		GF	2
3 0	0	GF COMPUTES THE INTEGRAND EXP(JKR)/(KR) FOR NUMERICAL INTEGRATION.	GF	3
4 (С		GF	4
5		COMMON /TMI/ ZPK,RKB2,IJ	GF	5
6		ZDK=ZK~ZPK	GF	6
7		RK=SQRT(RKB2+ZDK+ZDK)	GF	7
8		SI=SIN(RK)/RK	GF	8
9		IF (IJ) 1,2,1	GF	9
10	1	CO=COS(RK)/RK	GF	10
11		RETURN	GF	11
12 3	2	IF (RK.LT2) GO TO 3	GF	12
13		CO=(COS(RK)-1.)/RK	GF	13
14		RETURN	GF	14
15	3	RKS=RK*RK	GF	15
16		CO=((-1.388888889E-3*RKS+4.166666667E-2)*RKS5)*RK	GF	16
17		RETURN	GF	17
18		END	GF	18-

PURPOSE

To read the NGF file and store parameters in the proper arrays.

METHOD

GI22	Miscellaneous parameters are read.
GI30 - GI48	Segment coordinates were converted to the form involving
	the segment center, segment length, and orientation (see
	Section III, COMMON/DATA/) with dimensions of
	wavelength. They must be converted back to the
	coordinates of the segment ends so that subroutine
	CONNECT can locate connections. Dimensions are converted
	to meters,
GI52 - GI62	Patch coordinates are converted from units of wavelength
	to meters since they will be scaled back to wavelengths
	along with the new segments and patches.
GI63	Matrix blocking parameters are read.
G164	Interpolation tables for the Sommerfeld integrals are
	read if the Sommerfeld/Norton ground treatment was used.
GI74	Matrix A_{f} is read for in-core storage (ICASE = 1 or 2).
G178 - G181	A_{F} is read for ICASE = 4.
G183 - G188	A_{F} is read for ICASE = 3 or 5.
GI92 - GI113	A heading summarizing the NGF file is printed.
	·

D X	= nalf segment length (meters)
IGFL	= file number for NGF file
IOUT	= number of elements in matrix
IPRT	= 1 to print coordinates of ends of segments
NBL2	= two times number of blocks in matrix A_F (since A_F is
	stored twice, in ascending and descending order)
NEQ	= order of the NGF matrix
NO P	= number of symmetric sections
NPEQ	= number of unknowns for a symmetric section
XI, YI, ZI	= coordinates of the center of a segment or patch

GFIL

IL					
	1	SUBROUTINE GFIL (IPRT)	GI		
	2 C		GI	1 2	
	3 C	GFIL READS THE N.G.F. FILE	GI	3	
	4 C		GI	4	
	5 6	COMPLEX CM, SSX, ZRATI, ZRATI2, T1, ZARRAY, AR1, AR2, AR3, EPSCF, FRATI	GI	5	
	8 7	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	GI	6	
	8	1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(2300),WLAM,IPSYM	GI	7	
	9	COMMON /CMB/ CM(4000)	GI	8	
	10	COMMON /ANGL/ SALP(300)	GI	9	
	11	COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR,	GI	10	
	12	1IPERF, T1, T2		11	
	13	COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY	GI	12 13	
	14	1A(3),XSA(3),YSA(3),NXA(3),NYA(3)	ст	14	
	15	COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, TMAT T	GT	15	
	16	1CASX,NBBX,NPBX,NL9X,NBBL,NPBL,NLBL	GI	16	
	17	COMMON /SMAT/ SSX(16,16)	GI	17	
	18	COMMON /ZLOAD/ ZARRAY(300),NLOAD,NLODF	GI	18	
	19	COMMON /SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ	GI	19	
	20	DATA IGFL/20/	GI	20	
	21	REWIND IGFL	GI	21	
	22 23	READ (IGFL) N1, NP, M1, MP, WLAM, FMHZ, IPSYM, KSYMP, IPERF, NRADL, EPSR, SIG		22	
	24	1, SCRWLT, SCRWRT, NLODF, KCOM N=N1	GI	23	
	25	M=M1	GI	24	
	26	N2=N1+1	GI	25	
	27	M2=M1+1	GI GI	26 27	
	28	IF (N1.EQ.0) GO TO 2	GI	28	
	29 C	READ SEG. DATA AND CONVERT BACK TO END COORD. IN UNITS OF METERS	GI	29	
	30	READ (IGFL) (X(I),I=1,N1),(Y(I),I=1,N1),(Z(I),I=1,N1)	GI	30	
	31	READ (IGFL) $(SI(I), I=1, N1), (BI(I), I=1, N1), (ALP(I), I=1, N1)$	GI	31	
	32	READ (IGFL) (BET(I), I=1,N1), (SALP(I), I=1,N1)	GI	32	
	33	READ (IGFL) (ICON1(I), I=1, N1), (ICON2(I), I=1, N1)	GI	33	
	34	READ (IGFL) (ITAG(I), I=1,N1)	GI	34	
	35 36	IF (NLODF.NE.0) READ (IGFL) (ZARRAY(I), I=1,N1)	ĠI	35	
	37	DO 1 I=1,N1 XI=X(I)*WLAM	GI	36	
	38	YI=X(I) WLAM YI=Y(I) WLAM	GI	37	
	39	ZI=Z(I)*WLAM	GI	38	
	40	DX=SI(I)*.5*WLAM	GI GI	39 40	
	41	X(I)=XI-ALP(I)*DX	GI	40	
	42	Y(I)=YI-BET(I) • DX	GI	42	
	43	Z(I)=ZI-SALP(I)*DX	GI	43	
	44	SI(I)=XI+ALP(I)*DX	GI	44	
	45	ALP(I)=YI+BET(I)*DX	GI	45	
	46	<pre>BET(I)=ZI+SALP(I)*DX</pre>	GI	46	
	47	BI(I)=BI(I)*WLAM	GI	47	
	48 1 49 2	CONTINUE	GI	48	
	49 2 50	IF (M1.EQ.0) GO TO 4 J=LD-M1+1	GI	49	
	51 C	READ PATCH DATA AND CONVERT TO METERS	GI	50	
	52	READ (IGFL) $(X(I), I=J, LD), (Y(I), I=J, LD), (Z(I), I=J, LD)$	GI	51	
	53	READ (IGFL) $(SI(I), I=J, LD), (BI(I), I=J, LD), (ALP(I), I=J, LD)$	GI GI	52 53	
	54	READ (IGFL) (BET(I), I=J, LD), (SALP(I), I=J, LD)	GI	53 54	
	55	READ (IGFL) (ICON1(I), I=J,LD), (ICON2(I), I=J,LD)	GI	55	
	56	READ (IGFL) (ITAG(I), I=J,LD)	GI	56	
	57	DX=WLAM*WLAM	GI	57	
	58	DO 3 I=J.LD	GI	58	
	59	X(I) = X(I) * WLAM	GI	59	
	60 61	$Y(I) = Y(I) \cdot WLAM$	GI	60	
	62 3	Z(I)=Z(I)*WLAM BI(I)=BI(I)*DX	GI	61	
	63 4	READ (IGFL) ICASE.NBLOKS,NPBLK.NLAST.NBLSYM.NPSYM.NLSYM.IMAT	GI	6.2	
	64	IF (IPERF.EQ.2) READ (IGFL) AR1, AR2, AR3, EPSCF, DXA, DYA, XSA, YSA, NXA.	GI	63	
			01	64	

65 1NYA GI 65 66 NEQ=N1+2*M1 GΙ 66 6.7 NPEQ=NP+2*MP GI 67 68 NOP=NEQ/NPEQ GI 68 69 IF (NOP.GT.1) READ (IGFL) ((SSX(I,J),I=1,NOP), J=1,NOP) GI 69 70 READ (IGFL) (IP(I), I=1, NEQ), COM GI 70 71 C READ MATRIX A AND WRITE TAPE13 FOR OUT OF CORE GT 71 72 IF (ICASE.GT.2) GO TO 5 GT 72 73 IOUT=NEQ*NPEQ GI 73 74 READ (IGFL) (CM(I), I=1, IOUT) GI 74 75 GO TO 10 GI 75 76 5 **REWIND 13** GI 76 77 IF (ICASE.NE.4) GO TO 7 GI 77 78 IOUT=NPEO*NPEO GI 78 79 DO 6 K=1,NOP GI 79 80 READ (IGFL) (CM(J), J=1, IOUT) GI 80 81 6 WRITE (13) (CM(J), J=1, IOUT) GI 81 82 GO TO 9 GI 82 83 7 IOUT=NPSYM*NPEQ*2 GI 83 NBL2=2*NBLSYM 84 GI 84 DO 8 IOP=1,NOP 85 GT 85 86 DO 8 I=1.NBL2 GI 86 87 CALL BLCKIN (CM.IGFL,1,IOUT,1,206) GI 87 CALL BLCKOT (CM, 13, 1, IOUT, 1, 205) 88 8 GI 88 89 9 REWIND 13 GI 89 90 10 REWIND IGFL GI 90 91 C PRINT N.G.F. HEADING GI 91 92 PRINT 16 GI 92 93 PRINT 14 GI 93 94 PRINT 14 94 GI 95 PRINT 17 GI 95 96 PRINT 18, N1,M1 GI 96 97 IF (NOP.GT.1) PRINT 19, NOP GI 97 98 PRINT 20, IMAT, ICASE GI 98 GI 99 99 IF (ICASE.LT.3) GO TO 11 100 NBL2=NEQ*NPEQ GI 100 PRINT 21, NBL2 GI 101 101 GI 102 PRINT 22, FMHZ 102 11 IF (KSYMP.EQ.2.AND.IPERF.EQ.1) PRINT 23 GI 103 103 IF (KSYMP.EQ.2.AND.IPERF.EQ.0) PRINT 27 GI 104 104 GI 105 105 IF (KSYMP.EQ.2.AND.IPERF.EQ.2) PRINT 28 GI 106 106 IF (KSYMP.EQ.2.AND.IPERF.NE.1) PRINT 24, EPSR,SIG GI 107 107 PRINT 17 GI 108 108 DO 12 J=1,KCOM GI 109 109 12 PRINT 15, (COM(I,J), I=1, 13) GI 110 PRINT 17 110 GI 111 111 PRINT 14 GI 112 PRINT 14 112 GI 113 PRINT 16 113 GI 114 IF (IPRT.EQ.0) RETURN 114 GI 115 PRINT 25 115 GI 116 116 DO 13 I=1.N1 PRINT 26, I,X(I),Y(I),Z(I),SI(I),ALP(I),BET(I) GI 117 117 13 GI 118 RETURN 118 GI 113 1;9 C 120 14 GI 121 12: GI 122 FORMAT (5X, 3H** , 13A6, 3H **) 122 15 GI 123 123 16 FORMAT (////) GI 124 FORMAT (5X,2H**,80X,2H**) 124 17 FORMAT (5X,29H** NUMERICAL GREEN'S FUNCTION, 53X, 2H**, /, 5X, 17H** NO GI 125 125 18 GT 126 1. SEGMENTS =, I4, 10X, 13HNO. PATCHES =, I4, 34X, 2H**) 126 FORMAT (5X,27H** NO. SYMMETRIC SECTIONS =, I4, 51X, 2H**) GI 127 127 19 FORMAT (5X,34H** N.G.F. MATRIX - CORE STORAGE =,17,23H COMPLEX NU GI 12E 128 20

CFIL

129		IMBERS, CASE, 12, 16X, 2H**)		
130	21	FORMAT (5X, 2H ••, 19X, 13HMATRIX SIZE =, 17, 16H COMPLEX NUMBERS, 25X, 2H	61	129
131		1. (OA, 211 , 198, 191MATRIX SIZE =, 17, 16H COMPLEX NUMBERS, 25X, 2H	GI	130
132	5.9		GI	131
		FORMAT (5X,14H** FREQUENCY =,E12.5,5H MHZ.,51X,2H**)	GI	132
133		FORMAT (5X,17H** PERFECT GROUND,65X,2H**)	CT	1 7 7
134	24	FORMAT (5X, 44H** GROUND PARAMETERS - DIELECTRIC CONSTANT =, E12.5.2	01	133
135		16X,2H**./,5X,2H**.21X,14HCONDUCTIVITY =,E12.5,8H MHOS/M.,25X,2H**)	61	134
136	25	EOPLAT (70% 11 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GI	135
	23	FORMAT (39X, 31HNUMERICAL GREEN'S FUNCTION DATA, /, 41X, 27HCOORDINATE	GI	136
137		IS OF SEGMENT ENDS, / ,51X, 8H(METERS), / ,5X, 4HSFG 11X 19H END ON	ст	177
138		2E, 26X, 19H END TWO, /, 6X, 3HNO., 6X, 1HX, 14X, 1HY, 14X, 1	CT.	1 7 8
139		3HZ, 14X, 1HX, 14X, 1HY, 14X, 1HZ)		
140	26	FORMAT (1X, I7, 6E15.6)		139
141			GI	140
	21	FORMAT (5X,55H** FINITE GROUND. REFLECTION COEFFICIENT APPROXIMAT	GI	141
142		1ION, 27X, 2H**)	GT	142
143	28	FORMAT (5X,38H** FINITE GROUND. SOMMERFELD SOLUTION,44X,2H**)		143
144		END	-	
			GI	144 -

CFLD

PURPOSE

To compute the electric field at intermediate distances from a radiating structure over ground, including the surface-wave field component.

METHOD

Approximate expressions for the field of a horizontal or vertical current element over a ground plane were derived by K. A. Norton (ref. 2). These expressions are used to evaluate the field of each segment in a structure and the components summed for the total field of the structure. To evaluate Norton's expressions for segment i, a local coordinate system (x', y', z') is defined (fig. 6a) with origin on the ground plane and the vertical z axis passing through segment i. In the (x, y, z) coordinate system (fig. 6 b) the location and orientation of segment i are

$$\vec{r}_{i} = x_{i}\hat{x} + y_{i}\hat{y} + z_{i}\hat{z}$$
$$\hat{i} = \cos \alpha \cos \beta \hat{x} + \cos \alpha \sin \beta \hat{y} + \sin \alpha$$

and the field observation point is at (ρ, ϕ, z) . The origin of the primed coordinate system is at $(x_i, y_i, 0)$ in the umprimed coordinates, and the x' axis is along the projection of the segment on the ground plane.

 \hat{z}

Norton's expressions give the electric field in ρ' , ϕ' , and z' components for infinitesimal current elements either vertical or horizontal, and directed along the x' axis. To evaluate the field of a segment, the segment current is decomposed into horizontal and vertical components, and the fields of the infinitesimal current elements are integrated over the segment. Each field component for the infinitesimal current element has the form

$$E_{\Lambda}(\rho', \phi', z') = F_{1}(\rho', \phi', z')exp(-jkR_{1}) + F_{2}(\rho', \phi', z')exp(-jkR_{2})$$
,

for

$$R_{1} = |\overline{R}_{1}|$$
$$R_{2} = |\overline{R}_{2}|$$

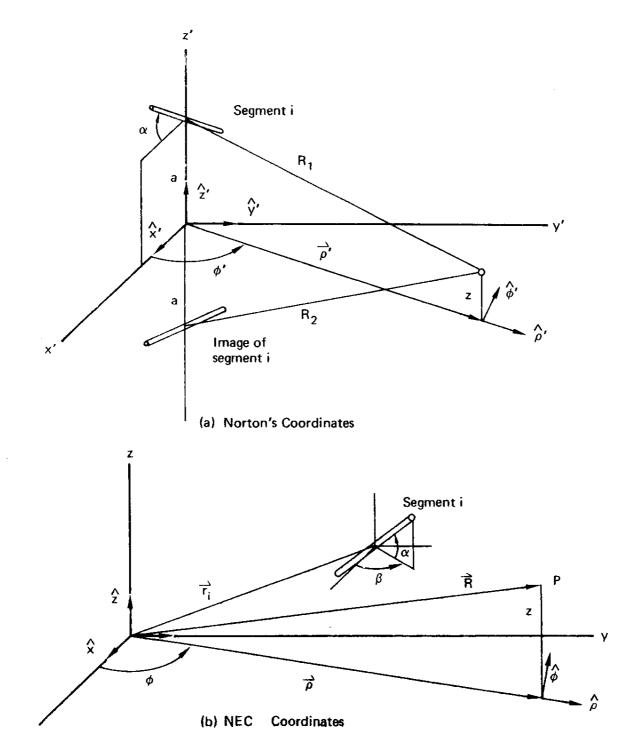


Figure 6. Coordinate Systems Used to Evaluate Norton's Expressions for the Ground Wave Fields in the NEC Program.

where F_1 and F_2 are algebraic functions of R_1 and R_2 and can be considered constant for integration over the segment as long as R_1 and R_2 are much greater than the segment length. To integrate the exponential factors over the segment, R_1 and R_2 are approximated as

$$R_1 \approx R - \hat{R}_1 \cdot (\vec{r}_1 + \hat{i}s)$$
$$R_2 \approx R - \hat{R}_2 \cdot (\vec{r}_1 + \hat{i}s)$$

where $R = |\vec{R}|$, $\hat{\vec{R}}_1 = |\vec{R}_1|$, $\hat{\vec{R}}_2 = |\vec{R}_2|$; \vec{r}_1 , $\hat{i}' = position$ and orientation of image of segment i, and s = variable of length along the segment (s = 0 at segment center). The current on the segment is

$$I_i(s) = A_i + B_i \sin ks + C_i \cos ks$$
.

With F and F considered constant, each vector component of the field produced by segment i involves an integral of the form

$$E = F_{1}^{\prime} \int_{-\Delta/2\lambda}^{\Delta/2\lambda} \frac{I_{i}(s)}{\lambda} \exp(-jks\omega) d\frac{s}{\lambda} + F_{2}^{\prime} \int_{-\Delta/2\lambda}^{\Delta/2\lambda} \frac{I_{i}(s)}{\lambda} \exp(-jks\omega^{\prime}) d(s/\lambda) ,$$

where

$$F'_{1} = \lambda^{2}F_{1} \exp[-jk(R - \hat{R}_{1} \cdot \bar{r}_{i})]$$

$$F'_{2} = \lambda^{2}F_{2} \exp[-jk(R - \hat{R}_{2} \cdot \bar{r}_{i})]$$

$$\omega = -\hat{R}_{1} \cdot \hat{i}$$

$$\omega' = -\hat{R}_{2} \cdot \hat{i}'$$

$$\Delta = \text{segment length}$$

The integrals can be evaluated as

$$G_{1} = \int_{-\Delta/2\lambda}^{\Delta/2\lambda} \frac{I_{i}(s)}{\lambda} \exp(-j2\pi \omega s/\lambda) d\frac{s}{\lambda}$$

GFLD

$$2\pi G_{1} = \frac{A_{1}}{\lambda} \frac{2 \sin \pi \omega d}{\omega}$$
$$- j \frac{B_{1}}{\lambda} \left\{ \frac{\sin [\pi (1-\omega)d]}{(1-\omega)} - \frac{\sin [\pi (1+\omega)d]}{(1+\omega)} \right\}$$
$$+ \frac{C_{1}}{\lambda} \left\{ \frac{\sin [\pi (1-\omega)d]}{(1-\omega)} + \frac{\sin [\pi (1+\omega)d]}{(1+\omega)} \right\}$$

where $d = \Lambda/\lambda$. The integral for G_2 (the coefficient of F_2) is the same with $\overline{r_i}$ and \hat{i} reflected in the ground plane. The terms G_1 and G_2 and other necessary quantities are passed to subroutine GWAVE through COMMON/GWAV/. GWAVE returns the field components

 $E_{\rho}^{v} = \rho'$ component of field due to vertical current component $E_{z}^{v} = z$ component of field due to vertical current component $E_{\rho}^{h} = \rho'$ component of field due to horizontal current component $E_{\phi}^{h} = \phi'$ component of field due to horizontal current component $E_{z}^{h} = z$ component of field due to horizontal current component

The common factor $\exp(-jkR)$ occurring in F_1' and F_2' is omitted from the field components and included in the total field after summation.

These field components are then combined to form the total field in x, y, z components and summed for each segment. The field is finally converted to r, θ , ϕ components in a spherical coordinate system coinciding with the x, y, z coordinate system.

The approximations involved in the calculation of the surface wave are valid to second order in u^2 , where

u = k/k₂ k = wave number in free space k₂ = wave number in ground medium

The approximations are valid for practical ground parameters. To ensure that the expressions are not used in an invalid range, however, the surface wave is not computed if |u| is greater than 0.5. Rather, subroutine FFLD is called, and the resulting space wave is multiplied by the range factor $\exp(-jkR)/(R/\lambda)$. The radial field component will be zero in this case. FFLD is also called if R/λ is greater than 10^5 , or if there is no ground present.

-162-

"DOI	P DICTI	JM	AKI
	А	=	coefficient of A_i/λ in $2\pi G_1$ and $2\pi G_2$
	ABS		external routine (absolute value)
	ARG	=	argument of exp() for phase factor
	ATAN	×	external routine (arctangent)
	В	=	coefficient of B_i/λ in $2\pi G_1$ and $2\pi G_2$
			sin (BOT)/BOT
	BOT	=	$\pi(1 - \omega)d$
	С	=	coefficient of C_i/λ in $2\pi G_1$ and $2\pi G_2$
			$\cos \alpha \cos \beta$ for segment I
	CABS	=	external routine (magnitude of complex number)
	CALP	=	cos a
	CBET	=	cos β
	CIX		
	CIY	=	x, y, z components in summation for field
	ciz)		
	CMPLX	=	external routine (forms complex number)
	COS	=	external routine (cosine)
	СРН	=	$\cos \phi'$
	DX		
	DY	=	x, y, z components of i
	DZ		
	EL	=	πd
	EPH	=	E^h_{φ} or E^h_{φ} cos $lpha$ ($_{\varphi}$ ' component of total field of segment i)
			<pre> component of field of structure </pre>
	ERD	=	R component of field of structure
	ERH	=	${ extsf{E}}^{ extsf{h}}_{ extsf{O}}$ and $ ho extsf{'}$ component of total field of segment i
	ERV		EV
	ETH	=	θ component of field of structure
	EX	=	x component of field for segment i
	EXA	Ξ	phase factor at GD30 and GD130:
			$G_1 \exp(jk\hat{R}_1 \cdot \bar{r}_i)$ or $G_2 \exp(jk\hat{R}_2 \cdot \bar{r}_i)$ at GD109
	EY	E	y component of field for segment i
	EZH	×	E_{z}^{h} and z component of total field of segment i
	EZV	=	z z E z
			2

```
FFLD = external routine (computes space wave)
GWAVE = external routine (computes E_0^v, E_0^h, \dots)
1
        = DO loop index (i)
Κ
         = DO loop index (loop over segment and image)
KSYMP = 1 if ground is present; 0 otherwise
OMEGA = \omega
PHI
         = φ
      = x component of \hat{\phi}
РНХ
       = y component of \hat{\phi}
РНҮ
ΡI
        = π
R
         = R/\lambda
RFL
        = sign factor to reflect segment coordinates in ground
         = \rho/\lambda
RHO
RHP
         = \rho'/\lambda
        = (\rho'/\lambda)^2
RHS
RHX = x component of \hat{\rho}'
RHY = y component of \hat{\rho}'
        = imaginary part of 2\pi G_1 or 2\pi G_2
RI
         = x component of \overline{R}_1 / \lambda or \overline{R}_2 / \lambda
RIX
         = y component of \overline{R}_1/\lambda or \overline{R}_2/\lambda
RIY
         = z component of \overline{R}_1 / \lambda or \overline{R}_2 / \lambda
RIZ
RNX
         = x, y, z components of \hat{R}_1 or \hat{R}_2 or \hat{R}
RNY
RNZ
         = real part of 2\pi G_1 or 2\pi G_2
RR
RX
        = x component of \rho/\lambda
RXYZ = R_1/\lambda or R_2/\lambda (for s = 0)
         = y component of \rho/\lambda
RY
         = z/\lambda
RZ
SAB(I) = \cos \alpha \sin \beta
       = sin \beta
SBET
SILL
         = πdω
         = external routine (sine)
SIN
SPH = \sin \phi'
```

SQRT	= external routine (square root)
THET	= 0 in spherical coordinate system
ТНХ	= x component of $\hat{\theta}$
THY	= y component of $\hat{\theta}$
THZ	= z component of $\hat{\theta}$
TOO	= sin (TOP)/TOP
TOP	$= \pi (1 + \omega) d$
тР	= 21
U	= u
UX	= u
U2	$= u^2$
XX1	= $G_1 \exp(jk\hat{R}_1 \cdot \bar{r}_i)$
XX2	$= G_2 \exp(jk\hat{R}_2 \cdot \vec{r_i})$

CONSTANTS

1.E-20	æ	tolerance in test for zero
1.E-7		tolerance in test for zero
1.E-6	*	tolerance in test for zero
0,5	=	upper limit for $ u $
3,141592654	-	π
6.283185308	=	2 m
1.E+5	=	upper limit for RA

CFLD

1 2 C	SUBROUTINF GFLD (RHO,PHI,RZ,ETH,EPI,ERD,UX,KSYMP)	GD	ŧ
		GD	2
3 0	GFLD COMPUTES THE RADIATED FIELD INCLUDING GROUND WAVE.	GD	3
4 C		GD	4
5	COMPLEX CUR, EPI, CIX, CIY, CIZ, EXA, XX1, XX2, U, U2, ERV, EZV, ERH, EPH	GD	5
6	COMPLEX EZH, EX, EY, ETH, UX, ERD	GD	6
7	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	GD	7
8	1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(GD	8
9	2300),WLAM, IPSYM	GD	9
10	COMMON /ANGL/ SALP(300)	GD	10
11	COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300	GD	11
12	1),CUR(900)	GD	12
13	COMMON /GWAV/ U.U2,XX1,XX2,R1,R2,ZMH,ZPH	GÐ	13
14	DIMENSION CAB(1), SAB(1)	GD	14
15	EQUIVALENCE (CAB(1),ALP(1)), (SAB(1),BET(1))	GD	15
16	DATA PI,TP/3.141592654,6.283185308/	GD	16
17	R=SQRT(RHO*RHO+RZ*RZ)	GD	17
18	IF (KSYMP.EQ.1) GO TO 1	GD	18
19	IF (CABS(UX).GT5) GO TO 1	GÐ	19
20	IF (R.GT.I.E5) GO TO 1	GD	20
21	GO TO 4	GD	21
22 C		GD	22
23 C	COMPUTATION OF SPACE WAVE ONLY	GD	23
24 C		GD	24
25 1	IF (RZ.LT.1.E-20) GO TO 2	GD	25
26	THET=ATAN(RHO/RZ)	GD	26
27	GO TO 3	GD	27
28 2	THET=PI*.5	GD	28
29 3	CALL FFLD (THET,PHI,ETH,EPI)	GD	29
30	ARG=-TP*R	GD	30
31	EXA=CMPLX(COS(ARG),SIN(ARG))/R	GD	31
32	ETH=ETH•EXA	GD	32
33	EPI=EPI*EXA	GD	33
34	ERD=(0.,0.)	GD	34
35	RETURN	GD	35
36 C		GD	36
37 C	COMPUTATION OF SPACE AND GROUND WAVES.	GD	37
38 C		GD	38
39 4	U⇒UX	GD	39
40	U2=U*U	GD	40
41	PHX=-SIN(PHI)	GD	41
42	PHY=COS(PHI)	GD	42
43	RX=RHO*PHY	GD	43
44	RY=-RHO+PHX	GD	44
45	CIX = (0., 0.)	GD	45
46	CIY=(0.,0.)	GD	46
40	CIZ = (0., 0.)	GD	40
48 C	012-(00.)	GD	48
40 C	SUMMATION OF FIELD FROM INDIVIDUAL SEGMENTS	GD	49
50 C	SUMMATION OF TILLD FROM INDIVIDUAL SLOWENTS	GD	50
51	DO 17 I=1,N	GD	51
52	DX = CAB(I)	GD	52
53	DY=SAB(I)	GD	53
54	DZ=SALP(I)	GD	54
55	RIX=RX-X(I)	GD	55
56 57	RIY=RY-Y(I)	GD	56 57
57 58	RHS=RIX*RIX+RIY*RIY	GD	57 58
58 59	RHP=SQRT(RHS) IF (RHP.LT.1.E-6) GO TO 5	GD	58
59 60		GD	59
60 61		GD	60 51
61 62	RHY=RIY/RHP	GD	61
62 635		GD	62
63 5	RHX=1 / RHY=0 .	GD GD	63 64
~ ~		ο υ	04

.

65 6	CALP=1DZ+DZ		
66	IF (CALP.LT.1.E-6) GO TO 7	GD	
67	CALP=SQRT(CALP)	GD	
68	CBET=DX/CALP	GD	67
69	SBET=DY/CALP	GD	
70	CPH=RHX*CBET+RHY*SBET	GD	69
71	SPH=RHY*CBET-RHX*SBET	GD	70
72	GO TO 8	GD	71
73 7	CPH=RHX	GD	72
74	SPH=RHY	GD	73
75 8	EL=PI•SI(I)	GD	74
76	RFL=-1.	GD	75
77 C		GD	
78 C	INTEGRATION OF (CURRENT) CONTRACTOR	GD	
79 C	INTEGRATION OF (CURRENT)*(PHASE FACTOR) OVER SEGMENT AND IMAGE FO	RGD	78
80 C	CONSTANT, SINE, AND COSINE CURRENT DISTRIBUTIONS	GD	
81	DO 16 K=1,2	GD	
82	RFL=-RFL	GD	
83	RIZ=RZ-Z(I)•RFL	GD	
84		GD	
85	RXYZ=SQRT(RIX*RIX+RIY*RIY+RIZ*RIZ) RNX=RIX/RXYZ	GD	84
86	RNY=RIY/RXYZ	GD	85
87	RNZ=RIZ/RXYZ	GÐ	86
88		GD	87
89	OMEGA=-(RNX+DX+RNY+DY+RNZ+DZ+RFL)	GD	88
90	SILL=OMEGA*EL	GD	89
91	TOP=EL+SILL	GD	90
92	BOT=EL-SILL	GD	91
93	IF (ABS(OMEGA).LT.1.E-7) GO TO 9	GÐ	92
94	A=2.*SIN(SILL)/OMEGA	GD	93
	GO TO 10	GD	94
95.9	A=(2,-OMEGA*OMEGA*EL*EL/3.)*EL	GD	95
96 10	IF (ABS(TOP).LT.1.E-7) GO TO 11	GD	96
97	TOO=SIN(TOP)/TOP	GD	97
98	GO TO 12	GD	98
99 11	T00=1T0P*T0P/6.	GD	99
100 12	IF (ABS(BOT).LT.1.E-7) GO TO 13	GD	100
101	BOO=SIN(BOT)/BOT		101
102	GO TO 14		102
103 13	BOO=1BOT*BOT/6.		103
104 14	B=EL*(B00-T00)		104
105	C=EL*(B00+T00)		105
106	RR=A*AIR(I)+B*BII(I)+C*CIR(I)		106
107	RI=A*AII(I)-B*BIR(I)+C*CII(I)		107
108	ARG=TP*(X(I)*RNX+Y(I)*RNY+Z(I)*RNZ*RFL)		108
109	EXA=CMPLX(COS(ARG),SIN(ARG))*CMPLX(RR,RI)/TP	GD	
110	IF (K.EQ.2) GO TO 15		110
111	XX1=EXA	GD	
112	R1=RXYZ	GD	
113	ZMH=RIZ	GD	
114	GO TO 16	GD	
115 15	XX2=EXA	GD	
116	R2=RXYZ	GD	
117	ZPH=RIZ	GD	
118 16	CONTINUE	GD	
119 C		GD	
120 C	CALL SUBROUTINE TO COMPUTE THE FIELD OF SEGMENT INCLUDING GROUND	GĐ	
121 C	WAVE.	GD	
122 C		GD	
123	CALL GWAVE (ERV, EZV, ERH, EZH, EPH)	GD	
124	ERH=ERH*CPH*CALP+ERV*DZ	GD	
125	EPH=EPH+SPH+CALP	GD	
126	EZH=EZH*CPH*CALP+EZV*DZ	GD	
127	EX=ERH+RHX-EPH+RHY	GD	
128	EY=ERH*RHY+EPH*RHX	GD	
		_	

GFLD

GFLD

129	CIX=CIX+EX	GD 129
130	CIY=CIY+EY	GD 130
131 17	CIZ=CIZ+EZH	GD 131
132	ARG=-TP*R	GD 132
133	EXA=CMPLX(COS(ARG),SIN(ARG))	GD 133
134	CIX=CIX*EXA	_ GD 134
135	CIY=CIY•EXA	GD 135
136	CIZ=CIZ*EXA	GD 136
137	RNX=RX/R	GD 137
138	RNY=RY/R	GD 138
139	RNZ=RZ/R	GD 139
140	THX=RNZ*PHY	GD 140
141	THY=~RNZ*PHX	GD 141
142	THZ=-RHO/R	GD 142
143	ETH=CIX * THX+CIY * THY+CIZ * THZ	GD 143
144	EPI=CIX*PHX+CIY*PHY	GD 144
145	ERD=CIX*RNX+CIY*RNY+CIZ*RNZ	GD 145
146	RETURN	GD 146
147	END	GD 147-

GFOUT

PURPOSE

To write the NGF file.

METHOD

The contents of the COMMON blocks in GFOUT are written to file 20. If ICASE is 3 or 5 the blocks of the LU decomposition of matrix A are on file 13 in ascending order and on file 14 in descending order. Both files are written to file 20.

SYMBOL DICTIONARY

IGFL = NGF file number

IOUT = number of elements in matrix

NEQ = order of matrix A

NOP = number of symmetric sections

NPEQ = number of unknowns for a symmetric section

GFOUT

1		SUBROUTINE GFOUT	GO	1
2			GO	2
3		WRITE N.G.F. FILE	GO	3
5	Ç	COMPLEX CM,SSX,ZRATI,ZRATI2.T1,ZARRAY,AR1,AR2,AR3,EPSCF,FRATI	60 60	4
6		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	GO	5 6
7		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(GO	7
8		2300), WLAM, IPSYM	GO	8
9		COMMON /CMB/ CM(4000)	GO	9
10		COMMON /ANGL/ SALP(300)	GO	10
11		COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR.	GO	11
12		11PERF, T1, T2	GO	12
13		COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY		13
14 15		<pre>1A(3),XSA(3),YSA(3),NXA(3),NYA(3) COMMON /MATPAR/ ICASE,NBLOKS,NPBLK,NLAST,NBLSYM,NPSYM,NLSYM,IMAT,I</pre>	GO	14
16		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	GO	15 16
17		COMMON /SMAT/ SSX(16,16)	GO	17
18		COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF	GO	18
19		COMMON /SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ	GO	19
20		DATA IGFL/20/	GO	20
21		NEQ=N+2*M	GO	21
22		NPEQ=NP+2*MP	GO	22
23		NOP=NEQ/NPEQ	GO	23
24 25		WRITE (IGFL) N,NP,M,MP,WLAM,FMHZ,IPSYM,KSYMP,IPERF,NRADL,EPSR,SIG, 1SCRWLT,SCRWRT,NLOAD,KCOM	GO	24
25		IF (N.EQ.O) GO TO 1	60 60	25 26
27		WRITE (IGFL) (X(I),I=1,N),(Y(I),I=1,N),(Z(I),I=1,N)	GO	27
28		WRITE (IGFL) (SI(I),I=1,N),(BI(I),I=1,N),(ALP(I),I=1,N)	GO	28
29		WRITE (IGFL) (BET(I), I=1, N), (SALP(I), I=1, N)	GO	29
30		WRITE (IGFL) (ICON1(I), I=1, N), (ICON2(I), I=1, N)	GO	30
31		WRITE (IGFL) (ITAG(I),I=1.N)	GO	31
32		IF (NLOAD.GT.O) WRITE (IGFL) (ZARRAY(I),I=1,N)	GO	32
33	1	IF (M.EQ.0) GO TO 2	GO	33
34		J = LD - M + 1 where (for) (y(f) f = (LD) (y(f) f = (LD) (7(f) f = (LD))	G0	34
35 36		WRITE (IGFL) (X(I),I=J.LD),(Y(I),I=J.LD),(Z(I),I=J.LD) WRITE (IGFL) (SI(I),I=J.LD),(BI(I),I=J.LD),(ALP(I),I=J.LD)	60 60	35 36
37		WRITE (IGFL) (BET(I),I=J,LD),(SALP(I),I=J,LD) WRITE (IGFL) (BET(I),I=J,LD),(SALP(I),I=J,LD)	GO	37
38		WRITE (IGFL) (ICON1(I), $I=J,LD$), (ICON2(I), $I=J,LD$)	GO	38
39		WRITE (IGFL) (ITAG(I),I=J,LD)	GO	39
40	2	WRITE (IGFL) ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT	GO	40
41		IF (IPERF.EQ.2) WRITE (IGFL) AR1,AR2,AR3,EPSCF,DXA,DYA,XSA,YSA,NXA	GO	41
42		1,NYA	GO	42
43		IF (NOP.GT.1) WRITE (IGFL) ((SSX(I,J),I=1,NOP),J=1,NOP)	GO	43
44		WRITE (IGFL) (IP(I),I=1,NEQ),COM IF (ICASE.GT.2) GO TO 3	GO GO	44 45
45 46		IOUT=NEQ•NPEQ	GO	45 46
47		WRITE (IGFL) (CM(I), I=1, IOUT)	GO	47
48		GO TO 12	GÖ	48
49		IF (ICASE.NE.4) GO TO 5	GO	49
50		REWIND 13	GO	50
51		I=NPEQ•NPEQ	GO	51
52		DO 4 K=1,NOP	GO	52
53		READ (13) $(CM(J), J=1, I)$	GO	53
54 55		WRITE (IGFL) (CM(J),J=1,I) Rewind 13	60 60	54 55
56		GO TO 12	GO	56
57		REWIND 13	GO	57
58		REWIND 14	GO	58
59		IF (ICASE.EQ.5) GO TO 8	GO	59
60		IOUT=NPBLK*NEQ*2	GO	60
61		DO 6 I=1,NBLOKS	GO	61
62		CALL BLCKIN (CM, 13, 1, IOUT, 1, 201) CALL BLCKOT (CM, TCEL, 1, TOUT, 1, 202)	60	62
63 64		CALL BLCKOT (CM,IGFL,1,IOUT,1,202) DO 7 I=1,NBLOKS	60 60	63 64
04				~ ~

76 77 78 79 80 81 81	8 9 10 11 12 C	CALL BLCKIN (CM,14,1,IOUT,1,203) CALL BLCKOT (CM,IGFL,1,IOUT,1,204) GO TO 12 IOUT=NPSYM*NPEQ*2 DO 11 IOP=1,NOP DO 9 I=1,NBLSYM CALL BLCKIN (CM,13,1,IOUT,1,205) CALL BLCKOT (CM,IGFL,1,IOUT,1,206) DO 10 I=1,NBLSYM CALL BLCKIN (CM,14,1,IOUT,1,207) CALL BLCKIN (CM,IGFL,1,IOUT,1,208) CONTINUE REWIND 13 REWIND 14 REWIND 1GFL PRINT 13, IGFL,IMAT RETURN	60 60 60 60 60 60 60 60 60 60 60 60 60 6	65 66 69 70 71 72 73 74 75 76 77 78 79 80 81 82
81			GO	81

GH

<u>GH</u>

PURPOSE

To compute the function that is numerically integrated for the near H field of a segment.

METHOD

The value returned by GH is

$$G = \left[\frac{1}{(kr)^3} + \frac{j}{(kr)^2}\right] \exp(-jkr) ,$$

where

$$r = \left[\rho'^2 + (z - z')^2\right]^{1/2}$$

- $\rho' = \rho$ coordinate of the field observation point in a cylindrical coordinate system with origin at the center of the source segment and z axis oriented along the source segment
- z = z coordinate of the integration point on the source segment k = $2\pi/\lambda$

SYMBOL DICTIONARY

 $CKR = \cos kr$ HR = real part of G Ш = imaginary part of G R = krRHKS = $(k\rho')^2$ $RR2 = 1/(kr)^2$ $RR3 = 1/(kr)^3$ $= (kr)^{2}$ RS SKR = sin krZK = kz ZPK = kz'

1	SUBROUTINE GH (ZK,HR,HI)	<u></u>	
2 C	INTEGRAND FOR H FIELD OF A WIRE	GH	1
3	COMMON /TMH/ ZPK, RHKS	GH	2
4	RS=ZK-ZPK	GH	3
5	RS=RHKS+RS•RS	GH	4
6	R=SQRT(RS)	GH	5
7	CKR=COS(R)	GH	6
8	SKR=SIN(R)	GH	7
9	RR2=1./RS	GH	8
10	RR3=RR2/R	GH	9
11	HR=SKR*RR2+CKR*RR3	GH	10
12	HI=CKR*RR2-SKR*RR3	GH	11
13	RETURN	GH	12
14	END	GH	13
1.4		GH	14-

GWAVE

PURPOSE

To compute the components of electric field due to an electric current element over a ground plane at intermediate distances, including the surface wave field.

METHOD

Approximate expressions for the electric field of a vertical or horizontal infinitesimal current element above a ground plane, including surface wave, were derived by K. A. Norton (ref. 2). The geometry is shown in figure 6a for a current element at height a above the ground plane and field observation point at p. The current element is located on the z' axis, and the horizontal current element is directed along the x' axis. The vertical current element produces z' and ρ ' field components given by

$$\begin{split} \mathbf{E}_{z}^{v} &= -\frac{j\eta\mathbf{I}d\ell}{2\lambda} \left\{ \cos^{2}\psi' \frac{\exp(-j\mathbf{k}\mathbf{R}_{1})}{\mathbf{R}_{1}} + \mathbf{R}_{v}\cos^{2}\psi \frac{\exp(-j\mathbf{k}\mathbf{R}_{2})}{\mathbf{R}_{2}} \right. \\ &+ (1 - \mathbf{R}_{v})\cos^{2}\psi + \mathbf{F}\frac{\exp(-j\mathbf{k}\mathbf{R}_{2})}{\mathbf{R}_{2}} \\ &+ u\sqrt{1 - u^{2}\cos^{2}\psi}\sin\psi + 2\frac{\exp(-j\mathbf{k}\mathbf{R}_{2})}{j\mathbf{k}\mathbf{R}_{2}^{2}} \\ &+ \frac{\exp(-j\mathbf{k}\mathbf{R}_{1})}{\mathbf{R}_{1}} \left(\frac{1}{j\mathbf{k}\mathbf{R}_{1}} + \frac{1}{(j\mathbf{k}\mathbf{R}_{1})^{2}}\right) (1 - 3\sin^{2}\psi') \\ &+ \frac{\exp(-j\mathbf{k}\mathbf{R}_{2})}{\mathbf{R}_{2}} \left(\frac{1}{j\mathbf{k}\mathbf{R}_{2}} + \frac{1}{(j\mathbf{k}\mathbf{R}_{2})^{2}}\right) (1 - 3\sin^{2}\psi) \right\} , \end{split}$$

$$\begin{split} E_{0}^{v} &= \frac{j\eta I d\ell}{2\lambda} \left\{ \sin \psi' \cos \psi' \frac{\exp(-jkR_{1})}{R_{1}} + R_{v} \sin \psi \cos \psi \frac{\exp(-jkR_{2})}{R_{2}} \right. \\ &- \cos \psi (1 - R_{v}) u \sqrt{1 - u^{2} \cos^{2} \psi} F \frac{\exp(-jkR_{2})}{R_{2}} \\ &- \sin \psi \cos \psi (1 - R_{v}) \frac{\exp(-jkR_{2})}{jkR_{2}^{2}} \\ &+ 3 \sin \psi' \cos \psi' \left(\frac{1}{jkR_{1}} + \frac{1}{(jkR_{1})^{2}} \right) \frac{\exp(-jkR_{1})}{R_{1}} \\ &- \cos \psi u \sqrt{1 - u^{2} \cos^{2} \psi} (1 - R_{v}) \frac{\exp(-jkR_{2})}{2jkR_{2}^{2}} \\ &+ 3 \sin \psi \cos \psi \left(\frac{1}{jkR_{2}} + \frac{1}{(jkR_{2})^{2}} \right) \frac{\exp(-jkR_{2})}{R_{2}} \right\} , \end{split}$$

where

. . .

F = 1 - j
$$\sqrt{\pi w} \exp(-w) \operatorname{erfc}(j\sqrt{w})$$

erfc(z) = 1 - erf(z)
erf(z) = $2/\sqrt{\pi} \int_{0}^{z} \exp(-t^{2}) dt$ (error function)
w = $4p_{1}/(1 - R_{v})^{2}$
 p_{1} = $-jkR_{2}u^{2} (1 - u^{2} \cos^{2} \psi)/(2\cos^{2} \psi)$
 R_{v} = $\frac{\sin \psi - u \sqrt{1 - u^{2} \cos^{2} \psi}}{\sin \psi + u \sqrt{1 - u^{2} \cos^{2} \psi}}$
u = k/k_{2}
k = wave number in free space
 k_{2} = wave number in lower medium
 $\sin \psi$ = $(z + a)/R_{1}$

GWAVE

•

The horizontal current element directed along the x' axis produces ρ ', ϕ ', and z' field components given by

$$\begin{split} E_{z}^{h} &= \frac{j\eta I d\ell}{2\lambda} \cos \phi' \left\{ \sin \psi' \cos \psi' \frac{\exp(-jkR_{1})}{R_{1}} \right. \\ &- R_{v} \sin \psi \cos \psi \cdot \frac{\exp(-jkR_{2})}{R_{2}} \\ &+ \cos \psi (1 - R_{v}) u \sqrt{1 - u^{2} \cos^{2} \psi} F \frac{\exp(-jkR_{2})}{R_{2}} \\ &+ \sin \psi \cos \psi (1 - R_{v}) \frac{\exp(-jkR_{2})}{jkR_{2}^{2}} \\ &+ 3 \sin \psi' \cos \psi' \left(\frac{1}{jkR_{1}} + \frac{1}{(jkR_{1})^{2}} \right) \frac{\exp(-jkR_{1})}{R_{1}} \\ &+ \cos \psi (1 - R_{v}) u \sqrt{1 - u^{2} \cos^{2} \psi} \frac{\exp(-jkR_{2})}{2jkR_{2}^{2}} \\ &- 3 \sin \psi \cos \psi \left(\frac{1}{jkR_{2}} + \frac{1}{(jkR_{2})^{2}} \right) \frac{\exp(-jkR_{2})}{R_{2}} \\ \end{array}$$

1

,

.

•

$$\begin{split} E_{D}^{\mathrm{fh}} &= \frac{-\mathrm{j} \eta \mathrm{I} \mathrm{d} \ell}{2\lambda} \cos \psi^{\mathrm{f}} \left\{ \sin^{2} \psi^{\mathrm{f}} \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{1}\right)}{\mathrm{R}_{1}} - \mathrm{R}_{\mathrm{V}} \sin^{2} \psi \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{R}_{2}} \right. \\ &\quad - \left(1 - \mathrm{u}^{2} \cos^{2} \psi\right) \mathrm{u}^{2} \left(1 - \mathrm{R}_{\mathrm{V}}\right) \mathrm{F} \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{R}_{2}} \\ &\quad + \left(\frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{1}} + \frac{1}{\mathrm{(j} \mathrm{k} \mathrm{R}_{1})^{2}}\right) \left(1 - 3 \cos^{2} \psi^{\mathrm{f}}\right) \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{1}\right)}{\mathrm{R}_{1}} \\ &\quad - \left(\frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}} + \frac{1}{\mathrm{(j} \mathrm{k} \mathrm{R}_{2})^{2}}\right) \left(1 - 3 \cos^{2} \psi^{\mathrm{f}}\right) \left[1 - \mathrm{u}^{2} \left(1 + \mathrm{R}_{\mathrm{V}}\right) - \mathrm{u}^{2} (1 - \mathrm{R}_{\mathrm{V}}) \mathrm{F}\right] \\ &\quad \times \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{R}_{2}} + \mathrm{u}^{2} \cos^{2} \psi \left(1 - \mathrm{R}_{\mathrm{V}}\right) \left(1 + \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}}\right) \\ &\quad \times \left[\mathrm{F}\left(\mathrm{u}^{2} (1 - \mathrm{u}^{2} \cos^{2} \psi) - \mathrm{sin}^{2} \psi + \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}}\right) - \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}}\right] \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{R}_{2}} \right] \\ &\quad \times \left[\mathrm{F}\left(\mathrm{u}^{2} (1 - \mathrm{u}^{2} \cos^{2} \psi) - \mathrm{sin}^{2} \psi + \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}}\right) - \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}}\right] \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{R}_{2}} \right] \\ &\quad + \left(\mathrm{R}_{\mathrm{h}} + 1\right) \mathrm{G} \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{R}_{2}} + \left(1 + \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{1}}\right) \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}^{2}} \\ &\quad - \left(1 + \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right) \left[1 - \mathrm{u}^{2} \left(1 + \mathrm{R}_{\mathrm{V}}\right) - \mathrm{u}^{2} \left(1 - \mathrm{R}_{\mathrm{V}}\right) \mathrm{F}\right] \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}^{2}} \\ &\quad - \frac{\mathrm{u}^{2} (1 - \mathrm{R}_{\mathrm{V}}\right)}{2} \left[\mathrm{F}\left(\mathrm{u}^{2} \left(1 - \mathrm{u}^{2} \cos^{2} \psi\right) - \mathrm{sin}^{2} \psi + \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}}\right) - \frac{1}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}}\right] \\ &\quad \times \frac{\exp\left(-\mathrm{j} \mathrm{k} \mathrm{R}_{2}\right)}{\mathrm{j} \mathrm{k} \mathrm{R}_{2}^{2}} \right] , \end{split}$$

where

$$G = [1 - j \sqrt{\pi v} \exp(-v) \operatorname{erfc}(j \sqrt{v})],$$

$$v = 4q_{1} / (1 + R_{h})^{2}$$

$$q_{1} = -jkR_{2} (1 - u^{2} \cos^{2} \psi) / (2u^{2} \cos^{2} \psi)$$

$$R_{h} = \frac{\sqrt{1 - u^{2} \cos^{2} \psi} - u \sin \psi}{\sqrt{1 - u^{2} \cos^{2} \psi} + u \sin \psi}$$

The approximations in these expressions are valid for R_1 and R_2 greater than about a wavelength and to second order in u^2 . In each equation, the first term represents the direct space wave field of the current element, the second term is the space wave field reflected from the ground, and the following higher order terms involving F and G represent the ground wave. It may be noted that the coefficients R_v and R_h are the Fresnel reflection coefficients for vertical and horizontal polarization, respectively.

To obtain the field due to a structure, these expressions are integrated over each segment and the fields of the segments are summed in subroutine GFLD. For integration, R_1 and R_2 are the distances from the integration point k on the segment to point p. Since R_1 and R_2 are assumed large compared to the segment length, R_1 , R_2 , ψ , and ψ' are considered constant during integration over the segment except where jkR_1 and jkk_2 occur in exponential functions. Thus, if s represents distance along the segment, the integral of each expression over the segment is obtained by replacing $(Idk/\lambda^2) \exp(-jkR_1)$ and $(Idk/\lambda^2) \exp(-jkR_2)$ by XX1 and XX2 from subroutine GFLD. A factor of $\exp(-jkR)$ is omitted from the fields and is included after summation in GFLD. Including a factor of $1/\lambda^2$ in XX1 and XX2 makes a factor of λ available to normalize R_1 and R_2 in the denominators of the field expressions. The factors $\sin \phi'$ or $\cos \phi'$ are omitted from the fields due to a horizontal current element in GWAVE and are supplied later.

SYMBOL DICTIONARY

CPP	= cos ψ
CPPP	= cos ψ'
	$t = \cos^2 \psi'$
CPP2	$=\cos^2\psi$
ECON	= $-j\eta/2$ (η = impedance of free space)
EPH	$= E_{\phi}^{h} / \sin \phi'$
ERH	$= E_{\rho}^{in}/\cos \phi'$
ERV	$= E_{\rho}^{\vee}$
EZH	$= E_z^h/\cos \phi'$
EZV	$= E_{Z}^{V}$
F	∓ F
FJ	$= j = \sqrt{-1}$
G	= G
	$= 1 - R_v$
	= π
P1	
Q1	
	= R _n
	$= -jkR_{\perp}$
	$= -jkR_2$
	$= R_v$
	$= R_1/\lambda$
	$= R_2/\lambda$
	$= \sin \psi$
	= sin ψ'
	$=\sin^2\psi'$
	$=\sin^2\psi$
TPJ	-
	$= 1 - u^2 \cos^2 \psi$
т2	
т3	$= -[1/(jkR_1) + 1/(jkR_1)^2]$

GWAVE.

```
T4 = -[1/(jkR_2) + 1/(jkR_2)^2]
U
        = u
        = u<sup>2</sup>
U 2
V
        = v
W
       = w
      = XX1/(R/\lambda)
XRl
     = XX2/(R/\lambda)
XR2
       = G_1 \exp(jk\hat{R}_1 \cdot \bar{r}_i)
XXI
       = G_2 \exp(jk\hat{R}_2 \cdot \hat{r}_i')
XX2
x1)
X 2
Х3
        = first, second, ..., seventh term in each field expression
Χ4
X5
X 6
X 7 ]
ZMH
        = z - a
ZPH
        = z + a
```

CONSTANTS

(0., 1.) = $j = \sqrt{-1}$ (0., 6.2831853) = $2\pi j$ (0., -188.363) = $-j\eta/2$ 3.1415926 = π

					GW
	1 2	с	SUBROUTINE GWAVE (ERV,EZV,ERH,EZH,EPH)	GW	1
	3		GWAVE COMPUTES THE ELECTRIC FIELD, INCLUDING GROUND WAVE, OF A	GW	2
	4	С	CURRENT ELEMENT OVER A GROUND PLANE USING FORMULAS OF K.A. NORTON	GW	3
	5	С	(PROC. IRE, SEPT., 1937, PP.1203,1236.)	G₩	4
	6	с	(1007, 11, 1203, 1236.)	GW	5
	7		COMPLEX FJ, TPJ, U2, U, RK1, RK2, T1, T2, T3, T4, P1, RV, OMR, W, F, Q1, RH, V, G, XR	GW	6
	8		11, XR2, X1, X2, X3, X4, X5, X6, X7, EZV, ERV, EZH, ERH, EPH, XX1, XX2, ECON, FBAR		7
	9		COMMON /GWAV/ U,U2,XX1,XX2,R1,R2,ZMH,ZPH	GW	8
	10		DIMENSION FJX(2), TPJX(2), ECONX(2)	GW	9
	11		EQUIVALENCE (FJ,FJX), (TPJ,TPJX), (ECON,ECONX)	GW	10
1	12		DATA PI/3.141592654/,FJX/0.,1./,TPJX/0.,6.283185308/	GW	11
	13		DATA ECONX/0.,-188.367/	GW	12
	14		SPPP=ZMH/R1	GW	13
	15		SPPP2=SPPP*SPPP	GW	14
	16		CPPP2=1SPPP2	GW	15
	17		IF (CPPP2.LT.1.E-20) CPPP2=1.E-20	GW GW	16
	18		CPPP=SQRT(CPPP2)	GW	17
	19		SPP=ZPH/R2	GW	18 19
	20		SPP2=SPP*SPP	GW	20
	21		CPP2=1SPP2	GW	21
	22		IF (CPP2.LT.1.E-20) CPP2=1.E-20	GW	22
	23		CPP=SQRT(CPP2)	GW	23
	24		RK1=~TPJ*R1	GW	24
	25		RK2=-TPJ*R2	GW	25
	26		T1=1U2*CPP2	GW	26
	27		T2=CSQRT(T1)	GW	27
	28		T3=(11./RK1)/RK1	GW	28
	29		T4=(11./RK2)/RK2	GW	29
	30		P1=RK2*U2*T1/(2.*CPP2)	GW	30
	31		RV=(SPP-U*T2)/(SPP+U*T2)	GW	31
	32		OMR=1RV	GW	32
	33		W=1./OMR	GW	33
	34		W=(4.,0.)*P1*W*W	GW	34
	35		F=FBAR(W)	GW	35
	36		Q1=RK2+T1/(2.+U2+CPP2)	GW	36
	37		RH=(T2-U*SPP)/(T2+U*SPP)	GW	37
	38		V=1./(1.+RH)	GW	38
	39		V=(4.,0.)*Q1*V*V	GW	39
	40		G=FBAR(V)	G₩	40
	41		XR1=XX1/R1	GW	41
	42 43		XR2=XX2/R2	GW	42
	43 44		X1≃CPPP2+XR1	GW	43
	45		X2=RV*CPP2*XR2	GW	44
	46			GW	45
	47		X4=U*T2*SPP*2.*XR2/RK2 X5=XR1*T3*(13.*SPPP2)	GW	46
	48		X6=XR2*T4*(1J.*SPP2)	GW	47
	49			GW	48
	50	•		GW	49
	51			GW	50
	52			GW	51
	53			GW	52
	54			GW	53
	55			GW	54 55
	56			GW GW	55 56
	57			GW	50 57
	58			GW	57 58
	59			GW	59
	60			GW	60
	61		X4=U2*T1*OMR*F*XR2	GW	61
	62		X5=T3*(1,-3,*CPPP2)*XR1	GW	62
	63		X6=T4*(13.*CPP2)*(1U2*(1.+RV)-U2*OMR*F)*XR2	GW	63
	64		X7=U2*CPP2*OMR*(11./RK2)*(F*(U2*T1-SPP2-1./RK2)+1./RK2)*XR2	GW	64

.

GWAVE

65	ERH=(X1-X2-X4-X5+X6+X7)*ECON	GW	65
66	X1=XR1	GW	66
67	X2=RH*XR2	GW	67
68	X3≕(RH+1.)*G*XR2	GW	68
69	X4=T3*XR1	· GW	69
70	X5=T4*(1U2*(1.+RV)-U2*OMR*F)*XR2	GW	70
71	X6=.5*U2*OMR*(F*(U2*T1-SPP2-1./RK2)+1./RK2)*XR2/RK2	GW	71
72	EPH=-(X1-X2+X3-X4+X5+X6)*ECON	GW	72
73	RETURN	GW	73
74	END	GW	74-

GX

PURPOSE

To evaluate terms for the field contribution due to segment ends in the thin wire kernel.

SYMBOL DICTIONARY

```
GZ = \exp(-jkr)/r = G_0
GZP = -(1 + jkr) \exp(-jkr)/r^3
R = r
R2 = r^2 = \rho^2 + z^2
RH = \rho
RK = kR
XK = 2\pi/\lambda
ZZ = z
```

CODE LISTING

1	SUBROUTINE GX (ZZ,RH,XK,GZ,GZP)	01	
2 C	SEGMENT END CONTRIBUTIONS FOR THIN WIRE APPROX.	GX	1
	SCOMENT END CONTRIBUTIONS FOR THIN WIRE APPROX.	GX	2
5	COMPLEX GZ,GZP		
4	R2=ZZ*ZZ+RH*RH	GX	3
5		GX	4
5	R=SQRT(R2)	GX	5
6	RK=XK◆R		5
7	C7 = CNPLY(COS(PK)) = CTN(DK)) (C)	GX	6
<i>'</i>	GZ=CMPLX(COS(RK),-SIN(RK))/R	GX	7
8	GZP=-CMPLX(1.,RK)+GZ/R2		, ,
9	RETURN	GX	8
-		GX	9
10	END	GY	10-
		0.	10-

GXX

PURPOSE

To evaluate terms for the field contribution due to segment ends in the extended thin wire kernel.

METHOD

Equations 89 through 94 in Part I are evaluated for $\rho > a$, and equations 99 through 103 for $\rho < a$. Several variables are used for storage of intermediate results before being set to their final values.

```
SYMBOL DICTIONARY
```

```
A = radius of source segment, a
A2 = a^2
C1 = 1 + jkr_0
C2 = 3(1 + jkr_0) - k^2r_0^2
C3 = (6 + jkr_0)k^2r_0^2 - 15(1 + jkr_0)
G1 = G_1
G1P = \partial G_1 / \partial z'
G2 = G_2
G2P = \partial G_2 / \partial z'
G_3 = \partial G_1 / \partial \rho
GZ = G_0
GZP = \partial G_0 / \partial z'
IRA = 1 to indicate \rho < a
R = r_0
R2 = r_0^2
R4 = r_0^4
RH = 0
RH2 = \rho^2
RK = kr_{2}0_{2}
RK2 = k^2 \tilde{r}_0^2
 T1 = a^2 \rho^2 / 4r^4
 T_2 = a^2/2r^2
 XK = k = 2\pi/\lambda
 ZZ = z' - z
```

GXX

			62
1	SUBROUTINE GXX (ZZ,RH,A,A2,XK,IRA,G1,G1P,G2,G2P,G3,GZP)		
2 C	DEGMENT LIND CONTRIBUTIONS FOR FXT THIN WIDE ADDON	GY	1
3	COMPLEX G2.01,02.03,01,01P.02.02P.03 07P	GY	2
4	RZ=ZZ*ZZ+RH*RH	GY	3
5	R=SQRT(R2)	GY	4
6	R4=R2*R2	GY	5
7	RK=XK*R	GY	6
8	RK2=RK*RK	GY GY	7
9	RH2=RH*RH	GY	8
10	T1=.25*A2*RH2/R4		9
11	T2=.5*A2/R2	GY GY	10
12	C1=CMPLX(1.,RK)		11
13	C2=3. •C1-RK2	GY GY	12
14	C3=CMPLX(6.,RK)*RK2+15.*C1		13
15	GZ=CMPLX(COS(RK),-SIN(RK))/R	GY	14
16	G2=GZ*(1.+T1*C2)	GY	15
17	G1=G2-T2*C1*GZ	GY GY	16
18	GZ=GZ/R2	GY	17
19	G2P=GZ+(T1+C3-C1)	GY	18
20	GZP=T2*C2*GZ	GY	19
21	G3=G2P+GZP	GY	20
22	G1P=G3*ZZ	GY	21 22
23	IF (IRA.EQ.1) GO TO 2	GY	22
24	G3=(G3+GZP)*RH	GY	23
25	GZP=-ZZ*C1*GZ	GY	
26	IF (RH.GT.1.E-10) GO TO 1	GY	25 26
27	G2=0.	GY	27
28	G2P=0.	GY	28
29	RETURN	GY	29
30 1	G2=G2/RH	GY	30
31	G2P=G2P+ZZ/RH	GY	31
32	RETURN	GY	32
332	T2=.5*A	GY	33
34	G2=-T2*C1*GZ	GY	34
35	G2P=T2*GZ*C2/R2	GY	35
36	G3=RH2*G2P-A*GZ*C1	GY	36
37	G2P=G2P*ZZ	GY	37
38	GZP=-ZZ*CI*GZ	GY	38
39	RETURN	GY	39
40	END	GY	40-
		01	+v

HFK

PURPOSE

To compute the near H field of a uniform current filament by numerical integration.

METHOD

The H field of a current filament of length Δ with uniform current distribution of magnitude I = λ is

$$H_{\phi} = \frac{k\rho'}{2} \int_{-k\Delta/2}^{k\Delta/2} \left[\frac{1}{(kr)^3} + \frac{j}{(kr)^2} \right] \exp(-jkr) d(kz) ,$$

where r, ρ' , z' and z are defined in the description of subroutine GH. The numerical integration is performed by the method of Romberg quadrature with variable interval width, which is described in the discussion of subroutine INTX. The integral is multiplied by $k\rho'/2$ at HF79 and HF80 in the code.

SYMBOL DICTIONARY

This listing excludes those variables used in the numerical quadrature algorithm, which are defined under subroutine INTX.

```
RHK = k\rho'

RHKS = (k\rho')^2

SGI = imaginary part of H_{\phi}

SGR = real part of H_{\phi}.

ZPK = kz' (z' = z coordinate of observation point)

ZPKX = ZPK
```

1	SUBROUTINE HFK (EL1, EL2, RHK, ZPKX, SGR, SGI)	HF	,
2 C	HER COMPUTES THE H FIELD OF A UNIFORM CURRENT ETLAMENT BY		1
3 C	NUMERICAL INTEGRATION	HF	2
4	COMMON /TMH/ ZPK,RHKS	HF	3
5	DATA NX, NM, NTS, RX/1, 65536, 4, 1.E-4/	HF	4
6	ZPK=ZPKX	HF	5
7	RHKS=RHK•RHK	HF	6
8	Z=EL1	HF	7
9	ZE=EL2	HF	8
10	S=ZE-Z	HF	9
11		HF	10
	EP=S/(10.•NM)	HF	11
12	ZEND=ZE-EP	HF	12
13	SGR=0.0	HF	13
14	SGI=0.0	HF	14
15	NS=NX	HF	15
16	NT=0	HF	
17	CALL GH (Z,G1R,G1I)		16
18 1	DZ=S/NS	HF	17
19	ZP=Z+DZ	HF	18
20	IF (ZP-ZE) 3,3,2	HF	19
21 2	DZ=ZE-Z	HF	20
22		ΗF	21
23 3	IF (ABS(DZ)-EP) 17,17.3	HF	22
	DZOT=DZ•.5	HF	23
24	ZP=Z+DZOT	HF	24
25	CALL GH (ZP,G3R,G3I)	HF	25
26	ZP=Z+DZ	HF	26
27	CALL GH (ZP,G5R,G5I)	HF	27
28 4	TOOR=(G1R+G5R)*DZOT	HF	28
29	T00I=(G1I+G5I)*DZOT	HF	29
30	T01R=(T00R+DZ*G3R)*0.5	HF	30
31	TO1I = (TOOI + DZ * G3I) * 0.5		
32	T10R = (4.0 + T01R - T00R)/3.0	HF	31
33	T10I = (4.0 + T01I - T00I)/3.0	HF	32
34		HF	33
	CALL TEST (TOIR, TIOR, TEIR, TOII, TIOI, TEII, 0.)	ΗF	34
35	IF (TE1I-RX) 5,5,6	HF	35
36 5	IF (TE1R-RX) 8,8,6	HF	36
376	ZP=Z+DZ*0.25	HF	37
38	CALL GH (ZP,G2R,G2I)	ΗF	38
39 ·	ZP=Z+DZ*0.75	HF	39
40	CALL GH (ZP,G4R,G4I)	НF	40
41	T02R=(T01R+DZOT*(G2R+G4R))*0.5	HF	41
42	T02I=(T01I+DZ0T*(G2I+G4I))*0.5	HF	42
43	T11R=(4.0+T02R-T01R)/3.0	HF	43
44	$T_{11I} = (4.0 + T_{02I} - T_{01I})/3.0$	HF	44
45	T20R = (16.0 * T11R - T10R) / 15.0		
46	T20I=(16.0+T11I-T10I)/15.0	HF	45
40		HF	46
	CALL TEST (T11R,T20R,TE2R,T11I,T20I,TE2I,0.)	HF	47
48	IF (TE2I-RX) 7,7,14	HF	48
49 7	IF (TE2R-RX) 9,9,14	HF	49
50 8	SGR=SGR+TIOR	ΗF	50
51	SGI=SGI+T10I	ΗF	51
52	NT=NT+2	ΗF	52
53	GO TO 10	ΗF	53
549.	SGR=SGR+T2OR	HF	54
55	SGI=SGI+T20I	ΗF	55
56	NT=NT+1	HE	56
57 10	Z=Z+0Z	HF	57
58	IF (Z-ZEND) 11,17,17	HF	58
59 11	G1R=G5R	HF	59
60	G11=G5I		
61	IF (NT-NTS) 1,12,12	HF	60 61
62 12	IF(NS-NX) 1,1,13	HF	61
		HF	62
63 13 64	NS=NS/2	HF	63
0.4	NT=1	HF	64

65	GO TO 1	υr	
66 14	NT=0	HF	65
67	IF (NSNM) 16,15,15	HF	66
68 15	PRINT 18, Z	HE	67
69	GO TO 9	HE	68
70 16	-	HF	69
	NS=NS*2	΄ ΗF	70
71	DZ=S/NS	HF	71
72	DZOT=DZ*0,5	HF	72
73	G5R=G3R	HF	73
74	G5I=G3I	HF	74
75	G3R=G2R	HF	75
76	G3I=G2I		
77	GO TO 4	HF	76
78 17	CONTINUE	HF	77
79	SGR=SGR*RHK*.5	HF	78
		HF	79
80	SGI=SGI*RHK*.5	HF	80
81	RETURN	HF	81
82 C		HF	82
83 18	FORMAT (24H STEP SIZE LIMITED AT Z=,F\$0.5)	HF	83
84	END	HF	84-
		•••	04-

HINTG

PURPOSE

To compute the near magnetic field due to a single patch in free space or over ground.

METHOD

The magnetic field is computed at the point, XI, YI, ZI due to the patch defined by parameters in COMMON/DATAJ/. The H field at $\overline{r} = (XI)\hat{x} + (YI)\hat{y} + (ZI)\hat{z}$ due to patch i, centered at \overline{r}_i , is approximated as:

$$\overline{H}(\overline{r}) = -\frac{1}{4\pi} \left[(1 + jkR) \frac{\exp(-jkR)}{(R/\lambda)^3} \right] \left[(\overline{R}/\lambda) \times \overline{J}_{i} \right] A_{i}/\lambda^2$$

where $\overline{R} = \overline{r} - \overline{r_i}$, and A_i is the area of patch i. This expression treats the surface currents as lumped at the center of the patch. \overline{H} is computed for unit currents along the surface vectors \hat{t}_{1i} and \hat{t}_{2i} .

When a ground is present, the code is executed twice in a loop. In the second pass, the field of the image of the patch is computed, multiplied by the reflection coefficients, and added to the direct field.

SYMBOL DICTIONARY

CR	$= \cos(kR)$
CTH	= cos θ , θ = angle between the reflected ray and the normal to
	the ground
EXC	
EYC	= x, y, and z components of \overline{H} excluding (× \overline{J}_i) term
EZC	L
EXK)	
EYK	$=\overline{H}$ for $\overline{J}_{i} = \hat{t}_{1i}$
EZK 丿	
EXS }	
EYS	$=\overline{H}$ for $\overline{J}_{i} = \hat{t}_{2i}$
EZS 🕽	
F1X)	
F1Y }	= \overline{H} for $\overline{J}_{i} = \hat{t}_{1i}$; direct or reflected field contribution
_{F1Z}]	

```
F2X
        = \overline{H} for \overline{J}_i = \hat{t}_{2i}; direct or reflected field contribution
 F2Y
 F2Z
 FPI
         = 4π
        = \overline{H} excluding the term (\overline{R}/\lambda) \times \overline{J}_{i}
 CAM
        = 1 for direct field, 2 for reflected field
 \mathbf{IP}
IPERF = 1 for perfect ground, 0 otherwise
KSYMP = 1 for free space, 2 for ground
 РХ
        = unit vector normal to plane of incidence for reflected ray \hat{\rho}
ΡY
R
        = R/\lambda
        = +1 for direct field, -1 for reflected field
RFL
RK
        = kR; k = 2\pi/\lambda
        = R<sub>H</sub>
RRH
RRV
        = R_V
        = R^2/\lambda^2
RSO
RX
        = \overline{R}/\lambda
RY
RZ
      = A_{f}/\lambda^2
S
SR
        = sin (kR)
T1XJ
T1YJ = \hat{t}_{11}
T1ZJ
T2XJ
T2YJ = \hat{t}_{21}
T2ZJ
TIZR = z component of \hat{t}_{11} for patch i or for the image of patch i
          reflected in the ground
T2ZR = same as T1ZR for the \hat{t}_{21}
ТΡ
        = 2π
XI)
       = field evaluation point r/\lambda
YI }
ZI
```

 $\begin{array}{c} XJ \\ Y.J \\ ZJ \end{array} = \text{position of center of patch } \overline{r}_{i} / \lambda \end{array}$

XYMAG = magnitude of \overline{R}/λ projected on the x-y plane

CONSTANTS

 $12.56637062 = 4\pi$ 6.283185308 = 2 π HINTG

1 2 C	SUBROUTINE HINTG (XI,YI,ZI)	ΗI	1
3	HINTG COMPUTES THE H FIELD OF A PATCH CURRENT	ΗI	2
4	COMPLEX EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, ZRATI, ZRATI2, GAM, F1X, F	ΗI	3
5	11Y, F1Z, F2X, F2Y, F2Z, RRV, RRH, T1, FRATI	ΗI	4
6	COMMON /DATAJ/ S.B.XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ		5
7	S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND	ΗI	6
8	COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR,		7
9	1 IPERF, T1, T2 FOULTVALENCE (T1X) CADID (T1X) CADID (T1X) CADID (T1X) CADID	НI	8
10	EQUIVALENCE (T1XJ,CABJ), (T1YJ,SABJ), (T1ZJ,SALPJ), (T2XJ,B), (T2Y 1J,IND1), (T2ZJ,IND2)		9
11	DATA FPI/12.56637062/,TP/6.283185308/	HI	10
12	RX=XI-XJ	HI	11
13	RY=YI-YJ	HI	12
14	RFL=-1.	HI HI	13 14
15	£XK=(0.,0.)	ΗI	15
16	EYK=(0.,0.)	HI	16
17	EZK=(0.,0.)	HI	17
18	EXS=(0.,0.)	HI	18
19	EYS=(0,,0,)	HI	19
20	EZS=(0.,0.)	HI	20
21	DO 5 IP=1,KSYMP	HI	21
22	RFL=-RFL	HI	22
23	RZ=ZI-ZJ*RFL	ΗI	23
24	RSQ=RX*RX+RY*RY+RZ*RZ	ΗI	24
25	IF (RSQ.LT.1.E-20) GO TO 5	ΗI	25
26	R=SQRT(RSQ)	ΗI	26
27	RK=TP+R	нI	27
28	CR=COS(RK)	ΗI	28
29	SR=SIN(RK)	ΗI	29
30	GAM≠-(CMPLX(CR,-SR)+RK*CMPLX(SR,CR))/(FPI*RSQ*R)*S	ΗI	30
31	EXC=GAM*RX	HI	31
32 33	EYC=GAM*RY	HI	32
34	EZC=GAM*RZ T1ZR=T1ZJ*RFL	HI	33
35	T2ZR=T2ZJ*RFL	HT	34
36	F1X = EYC + T1ZR - EZC + T1YJ	HI HI	35 36
37	F1Y=EZC*T1XJ-EXC*T1ZR	HI	37
38	F1Z=EXC+T1YJ-EYC+T1XJ	HI	38
39	F2X=EYC+T2ZR-EZC+T2YJ	HI	39
40	f2Y=EZC*T2XJ-EXC*T2ZR	ΗĪ	40
41	F2Z=EXC+T2YJ-EYC+T2XJ	HI	41
42	IF (IP.EQ.1) GO TO 4	HI	42
43	IF (IPERF.NE.1) GO TO 1	нī	43
44	F1X==F1X	ΗI	44
45	F1Y=-F1Y	HI	45
46	F1Z=-F1Z	нı	46
47	F2X = -F2X	HI	47
48	F2Y = -F2Y	ΗI	48
49	F2Z=-F2Z	ΗI	49
50	GO FO 4	ΗI	50
51 1	XYMAG=SQRF(RX*RX+RY*RY)	ΗI	51
52	IF (XYMAG.GT.I.E-6) GO TO 2	ΗI	52
53	PX=0	HI	53
54	PY=0.	HI	54
55 56	CTH=1. RRV=(1.,0.)	HI	55 52
57	GO = IO = 3	HI HT	56
58 2	PX=-RY/XYMAG	HI HI	57 58
59	PÝ=RX/XYMAG	HI	58 59
60	CTHERZ/R	ΗI	59 60
61	RRV=CSQRT(17RATI•ZRATI•(1CTH•CTH))	HI	60 61
62 3	RRH=ZRATI•CfH	HI	6 ₄
63	RRH=(RRH-RRV)/(RRH+RRV)	нî	63
64	RHV=ZRATI*RRV	нI	64

65 RRV=-(CTH-RRV)/(CTH+RRV) HI 65 66 GAM=(F1X*PX+F1Y*PY)*(RRV-RRH) HI 66 67 F1X=F1X*RRH+GAM*PX HI 67 68 F1Y=F1Y*RRH+GAM*PY HI 68 59 E1Z≈E1Z*RRH HI 69 70 GAM≃(F2X*PX+F2Y*PY)*(RRV-RRH) ۲ HI 70 71 F2X=F2X*RRH+GAM*PX ΗI 71 72 F2Y=F2Y*RRH+GAM*PY HI 72 73 F2Z=F2Z*RRH HI 73 74 4 EXK=EXK+F1X HI 74 EYK=EYK+F1Y 75 HI 75 EZK=EZK+F1Z 76 HI 76 77 EXS=EXS+F2X HI 77 EYS=EYS+F2Y 78 HI 78 79 EZS=EZS+F2Z HI 79 80 5 CONTINUE HI 80 81 RETURN HI 81 82 END HI 82-

PURPOSE

To compute the near magnetic field due to constant, sine, and cosine current distributions on a segment in free space or over ground.

METHOD

The magnetic field is computed at the point XI, YI, ZI due to the segment defined by parameters in COMMON/DATAJ/. The fields computed by routine HSFLX are stored in /DATAJ/. When a ground is present, the code is executed twice in a loop. In the second pass, the field of the image of the segment is computed, multiplied by the reflection coefficients, and added to the direct field.

The field is evaluated in a cylindrical coordinate system with the source segment at the origin. The radius of a segment on which the field is evaluated is treated in the same way as for the electric field in subroutine EFLD. When the field evaluation point is not on a segment, the observation segment radius is set to zero in the call to HSFLD. Thus, as for the electric field, the ρ coordinate of the field evaluation point is computed for the surface of the observation segment as $\rho' = (\rho^2 + a^2)^{1/2}$, where ρ is the distance from the axis of the source segment to (XI, YI, ZI) and a is the radius of the observation segment. The resulting H field is multiplied by ρ/ρ' .

SYMBOL DICTIONARY

ΑI = radius of observation segment, if any CTH = $\cos \theta$, θ = angle between the ray reflected from the ground and vertical = n = $\sqrt{\mu/\epsilon}$ ETA HPC) HPK = H_{d} due to cosine, constant, and sine current, respectively HPS РНХ] = $(\rho/\rho')\hat{\phi}$ in the cylindrical coordinates of the source segment PHY or its image PHZ

РХ = unit vector normal to the plane of incidence of the reflected PΥ rav. p QX = ρ/ρ' $[R_{\mu}\hat{\phi} + (R_{\mu} - R_{\mu})(\hat{\phi} \cdot \hat{p})\hat{p}]$ for reflected ray ΟY 0Z RFL = +1 for direct field, -1 for reflected field RH = 0' RHOSPC = distance from coordinate origin to the point where the ray from the source to (XI, YI, ZI) reflects from the ground RHOX = $\overline{\rho}$ or $\overline{\rho}/\rho'$ RHOY RHOZ = distance from the field evaluation point to the center of the RMAG source segment = R_H RRH = R., RRV SALPR = z component of unit vector in the direction of the source segment or its image ХI ΥI = x, y, z coordinates of the field evaluation point ΖI XIJ = x, y, z components of distance from center of source segment YIJ to field observation point ZIJ = x, y coordinates of the ground plane reflection XSPEC YSPEC point XYMAG = horizontal distance from the source segment to the field observation point = projection of the vector (XIJ, YIJ, ZIJ) on the axis of the ΖP source segment ZRATX = témporary storage for ZRATI

•

1	SUBROUTINE HSFLD (XI,YI,ZI,AI)	HS	1
	THE DESIGN OF THE PROPERTY CONSTANT, SINE, AND LOSINE CURRENT	HS	2
د. 4		HS	3
5	COMPLEX EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, ZRATI, ZRATI2, T1, HPK, HP	HS	4
с Э	IS, HPC, QX, QY, QZ, RRV, RRH, ZRATX, FRATI	HS	5
7	COMMON /DATAJ/ 5, B, XJ, YJ, ZJ, CABJ, SABJ, SALPJ, EXK, EYK, EZK, EXS, EYS, EZ	HS	6
' s	1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND	HŞ	7
0 9	COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR,	HS	8
10	1 IPERF, T1, T2	HS	9
11	DATA ETA/376.73/ XIJ=XI-XJ	HS	10
12	YIJ=YI-YJ	HS	11
13	RFL=-1.	HS	12
14	DO 7 IP=1,KSYMP	HS	13
15	RFL=-RFL	HS	14
16	SALPR=SALPJ*RFL	HS	15
17	ZIJ=ZI-RFL*ZJ	HS	16
18	ZP=XIJ*CABJ+YIJ*SABJ+ZIJ*SALPR	HS	17
19	RHOX=XIJ-CABJ•ZP	HS	18
20	RHOY=YIJ-SABJ*ZP	HS	19
21	RHOZ=ZIJ-SALPR*ZP	HS HS	20 21
22	RH=SQRT(RHOX*RHOX+RHOY*RHOY+RHOZ*RHOZ*RHOZ+AI*AI)	HS	21
23	IF $(RH,GT,1,E-10)$ GO TO 1	HS	23
24	EXK=0.	HS	24
25	EYK=0.	HS	25
26	EZK=0.	HS	26
27	EXS=0.	HS	27
28	EYS=0.	HS	28
29	EZS=0.	HS	29
30	EXC=0.	HS	30
31	EYC≕0.	HS	31
32	EZC=0.	HS	32
33	GO 10 7	HS	33
34		HS	34
35	RHOY≔RHOY/RH	HS	35
36	RHOZ=RHOZ/RH	HS	36
37	PHX=SABJ*RHOZ-SALPR*RHOY	ΗS	37
38	PHY=SALPR*RHOX-CABJ*RHOZ	ΉS	38
39	PHZ=CABJ*RHOY-SABJ*RHOX	HS	39
40	CALL HSFLX (S,RH,ZP,HPK,HPS,HPC)	HS	40
41	IF (IP.NE.2) GO TO 6	HS	41
42	IF (IPERF.EQ.1) GO TO 5	HS	42
43		HS	43
44	RMAG=SQRT(ZP*ZP+RH*RH)	HS	44
45	XYMAG=SQRT(XIJ•XIJ+YIJ•YIJ)	HS	45
46		HS	46
47 48		HS	47
40	IF (NRADL.EQ.0) GO TO 2	HS	48
49 50	XSPEC = (XI + ZJ + ZI + XJ)/(ZI + ZJ)	HS	49
51	YSPEC=(YI+ZJ+ZI+XJ)/(ZI+ZJ)	HS	50
52	RHOSPC=SQRT(XSPEC+XSPEC+YSPEC+T2+T2)	HS	51
53	IF (RHOSPC.GT.SCRWL) GO TO 2	HS HS	52 53
54	RRV=T1 + RHOSPC + ALOG(RHOSPC/T2)	HS	54
55	ZRATX=(RRV*ZRATI)/(ETA*ZRATI+RRV)	HS	55
56		HS	56
57		HS	57
58		HS	58
59		HS	59
60	PX=0.	45	60
51	PY=0.	ЯS	51
6 2	CTH=1,	нS	52
63	RRV=(1.,0.)	нs	\$3
64	GO TO 4	HS	64

				1	пэ
65	3	PX=-YIJ/XYMAG	нs	65	
66		PY=XIJ/XYMAG	HS		
67		CTH=ZIJ/RMAG	HS		
68		RRV=CSQRT(1ZRATX*ZRATX*(1CTH*CTH))	HS		
69	4	RRH=ZRATX*CTH	HS		
70		RRH=-(RRH-RRV)/(RRH+RRV)	HS		
71		RRV=ZRATX+RRV	HS		
72		RRV=(CTH-RRV)/(CTH+RRV)	HS		
73		QY=(PHX*PX+PHY*PY)*(RRV-RRH)	HS		
74		QX=QY+PX+PHX+RRH	HS		
75		QY=QY•PY+PHY•RRH	HS		
76		QZ=PHZ*RRH	HS	- +-	
77		EXK=EXK-HPK+QX	HS		
78		EYK=EYK-HPK•QY	HS		
79		EZK=EZK-HPK*QZ	HS		
80		EXS=EXS-HPS+QX	HS		
81		EYS=EYS-HPS+QY	HS		
82		EZS=EZS-HPS+QZ	HS		
83		EXC=EXC-HPC+QX	HS		
84		EYC=EYC-HPC+QY	HS		
85		EZC=EZC-HPC+QZ	HS		
86		GO TO 7	HS		
87	5	EXK=EXK-HPK*PHX	HS		
88		EYK=EYK-HPK*PHY	HS		
89		EZK=EZK-HPK*PHZ	HS		
90		EXS=EXS-HPS*PHX	HS		
91		EYS=EYS-HPS*PHY	HS		
92		EZS=EZS-HPS*PHZ	HS		
93		EXC=EXC-HPC*PHX	HS		
94		EYC=EYC-HPC*PHY	HS	94	
95		EZC=EZC-HPC+PHZ	HS		
96		GO TO 7	HS		
97	6	EXK=HPK*PHX	HS		
98		EYK=HPK • PHY	HS	98	
99		EZK=HPK*PHZ	HS	99	
100		EXS=HPS*PHX		100	
101		EYS=HPS*PHY		101	
102		EZS=HPS*PHZ		102	
103		EXC=HPC*PHX		103	
104		EYC=HPC*PHY		104	
105		EZC=HPC*PHZ		105	
106	7	CONTINUE		106	
107		RETURN		107	
108		END		108-	

.

HSFLX

PURPOSE

To compute the near H field of filamentary currents of sine, cosine, and constant distribution on a segment.

METHOD

The wire segment is considered to be located at the origin of a local cylindrical coordinate system with the point at which the H field is computed being (ρ, ϕ, z) . The coordinate geometry for a filament of current of length Δ is shown in figure 7. For a sine or cosine current distribution, the field can be written in closed form. For a current

$$I_0 \begin{bmatrix} \sin kz' \\ \\ \cos kz' \end{bmatrix}$$
,

the field is

 I_0/λ = 1 is assumed in this routine.

For small values of ρ with $|z| > \Delta/2$, this equation may produce large numerical errors due to cancellation of large terms. Hence, for z > 0 and $\rho/(z - \Delta/2) < 10^{-3}$, a more stable approximation for small $\rho/(z \pm \Delta/2)$ is used:

$$H_{\phi}(\rho, z) = \frac{(\rho/\lambda) (Io/\lambda)}{8\pi} \exp(-jkz) \left\{ \left[\frac{2\pi}{(z + \Delta/2)/\lambda} - \frac{2\pi}{(z - \Delta/2)/\lambda} \right] \begin{bmatrix} 1\\ -j \end{bmatrix} + \left[\frac{\exp(jk\Delta/2)}{(z - \Delta/2)^2/\lambda^2} \begin{pmatrix} \sin(k\Delta/2)\\ \cos(k\Delta/2) \end{pmatrix} - \frac{\exp(-jk\Delta/2)}{(z + \Delta/2)^2/\lambda^2} \begin{pmatrix} -\sin(k\Delta/2)\\ \cos(k\Delta/2) \end{pmatrix} \right] \right\}$$

For z < 0, the above equation is evaluated for $H_{\phi}(\rho, -z)$. The field of a sin kz' current is multiplied by -1 in this case, since it is an odd function of z.

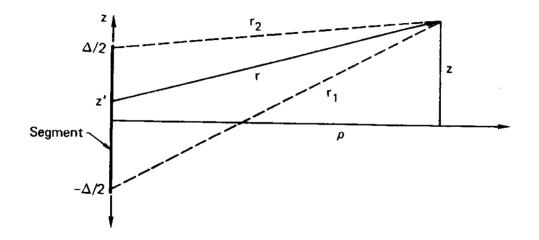


Figure 7. Coordinates for Evaluating H Field of a Segment.

The field due to a constant current is obtained by numerical integration, which is performed by subroutine HFK. If ρ is zero, all field quantities are set to zero, since H_{ϕ} is undefined.

SYMBOL DICTIONARY

CDK	Ξ	cos(k∆/2)
CONS	=	-j/(2kp)
DH	=	$\Delta/2$
		k∆/2
EKR1	=	exp(-jkr ₁)
EKR2	=	$exp(-jkr_2)$
FJ		j
FJK	=	-j2π
HKR, HKI	Ħ	real and imaginary parts of H due to a constant current ${}^{\!$
HPC)		Ψ
нрк	=	${\tt H}_{\varphi}$ due to cosine, constant, and sine currents, respectively
hps J		Y
HSS	=	sign of z
P18	=	8π
R1	=	r
R2	¥	r ₂
RH	=	ρ
RH2	-	ρ ²
RHZ	Ŧ	$\rho/(z - \Delta/2)$

HSFLX

-

S	= \(\)
SDK	$= \sin(k\Delta/2)$
ТР	= 2π
Z1	$= z + \Delta/2$
Z 2	$= z - \Delta/2$
ZP	= Z

.

	1	SUBROUTINE HSFLX (S.RH.ZPX, HPK, HPS, HPC)	ΗХ	1
	2 C	CALCULATES H FIELD OF SINE COSINE, AND CONSTANT CURRENT OF SEGMENT	НΧ	2
	3	COMPLEX FJ,FJK,EKR1,EKR2,T1,T2,CONS,HPS,HPC,HPK	ΗХ	3
	4	DIMENSION FJX(2), FJKX(2)	НΧ	4
	5	EQUIVALENCE (FJ,FJX), (FJK,FJKX)	НΧ	5
	6	DATA TP/6.283185308/.FJX/0.,1./.FJKX/0.,-6.283185308/	НΧ	6
	7	DATA P18/25.13274123/	НΧ	7
	В	IF (RH.LT.1.E-10) GO TO 6	ΗХ	8
	9	IF (ZPX.LT.O.) GO TO 1	НΧ	9
1		ZP=ZPX	НΧ	10
1		HSS=1.	нх	11
1		CO TO 2	НΧ	12
	31	ZP=-ZPX	НΧ	13
1		HSS=-1,	ΗХ	14
	52	DH=.5*S	НΧ	15
1		Z1=ZP+DH	НΧ	16
1		Z2=ZP-DH	НΧ	17
1		IF (Z2.LT.1.E-7) GO TO 3	НΧ	18
1		RHZ=RH/Z2	НΧ	19
2		GO TO 4	ΗX	20
	13	RHZ=1.	ΗХ	21
	24	DK=TP*DH	НΧ	22
2	3	CDK=COS(DK)	НΧ	23
2	4	SDK=SIN(DK)	НΧ	24
- 2	5	CALL HFK (-DK.DK.RH*TP.ZP*TP.HKR.HKI)	НΧ	25
2	6	HPK=CMPLX(HKR,HKI)	НΧ	26
2	7	IF (RHZ.LT.1.E-3) GO TO 5	НΧ	27
2	8	RH2=RH*RH	НΧ	28
2	9	R1=SQRT(RH2+Z1*Z1)	ΗХ	29
3	0	R2=SQRT(RH2+Z2*Z2)	ΗХ	30
3	1	EKR1=CEXP(FJK*R1)	НΧ	31
- 3	2	EKR2=CEXP(FJK+R2)	НΧ	32
3	3	T1=Z1*EKR1/R1	НΧ	33
3	4	T2=Z2•EKR2/R2	нх	34
3	5	HPS=(CDK*(EKR2-EKR1)-FJ*SDK*(T2+T1))*HSS	НΧ	35
3	6	HPC=-SDK*(EKR2+EKR1)-FJ*CDK*(T2-T1)	нх	36
3	7	CONS=-FJ/(2. *TP*RH)	ΗХ	37
3	8	HPS=CONS*HPS	ΗХ	38
3	9	HPC=CONS*HPC	ΗХ	39
4	0	RETURN	ΗХ	40
4	15	EKR1=CMPLX(CDK,SDK)/(Z2•Z2)	ΗХ	41
4	2	EKR2=CMPLX(CDK,-SDK)/(Z1•Z1)	ΗX	42
4	3	T1=TP*(1./Z1-1./Z2)	НΧ	43
4	4	T2=CEXP(FJK+ZP)+RH/PI8	нх	44
4	5	HPS=T2*(T1+(EKR1+EKR2)*SDK)*HSS	ΗХ	45
4	6	HPC=T2*(-FJ*T1+(EKR1-EKR2)*CDK)	ΗХ	46
4	7	RETURN	нх	47
	86	HPS=(0.,0.)	НΧ	48
4		HPC=(0.,0.)	ΗХ	49
5	0	HPK=(0.,0.)	нх	50
5		RETURN	нх	51
5	2	END	нх	52-

INTRP

PURPOSE

To evaluate the Sommerfeld integral contributions to the field of a source over ground by interpolation in precomputed tables.

METHOD

The interpolation region in R_1 and θ is covered by three grids as shown in Figure 12 of Part I. The interpolation tables and the number of data points and the boundaries of each grid are read from file 21 and stored in COMMON/GGRID/ by the main program. In subroutine INTRP the variable x corresponds to R_1 and y to θ .

The three interpolation tables are stored in the arrays AR1, AR2 and AR3 in COMMON/GGRID/. For grid i, ARi(I,J,K) is the value at

$$x_{I} = s_{i} + (I - 1) \Delta x_{i}$$
, $I = 1, \dots N_{i}$
 $y_{J} = t_{i} + (J - 1) \Delta y_{i}$, $J = 1, \dots M_{i}$

where
$$s_i = XSA(i)$$
, $\Delta x_i = DXA(i)$, $N_i = NXA(i)$
 $t_i = YSA(i)$, $\Delta y_i = DYA(i)$, $M_i = NYA(i)$

Each array contains values for I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} and I_{ϕ}^{H} from equations 156 through 159 of Part I for K equal to 1 through 4, respectively. The grid boundaries and density of points can be varied but the relative positions of the three grids must be as shown in Figure 12 of Part I for the logic for choosing the correct grid to work correctly. In particular, XSA(1), YSA(1) and YSA(2) must be zero; and XSA(2) and XSA(3) must be equal.

For a given x and y the values of I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} and I_{ϕ}^{H} are found by bivariate cubic interpolation and returned in the variables F1, F2, F3 and F4. The grid containing (x,y) is determined and a four by four point region containing (x,y) is selected. If x_{i} and y_{k} are the minimum values of x and y in the four by four point region then four interpolation polynomials in x are computed for $y = y_{i}$ with j = k, k + 1, k + 2, k + 3. These are

$$f_{ij}(x) = a_{ij}\xi_i^3 + b_{ij}\xi_i^2 + c_{ij}\xi_i + d_{ij}$$

where $\xi_i = (x - x_{i+1})/\Delta x$
 $a_{ij} = \frac{1}{6} [F_{i+3,j} - F_{i,j} + 3(F_{i+1,j} - F_{i+2,j})]$
 $b_{ij} = \frac{1}{2} [F_{i,j} - 2F_{i+1,j} + F_{i+2,j}]$
 $c_{ij} = F_{i+2,j} - \frac{1}{6} [2F_{i,j} + 3F_{i+1,j} + F_{i+3,j}]$
 $d_{ij} = F_{i+1,j}$
 $F_{i,j} = F(x_i, y_j)$

A cubic polynomial in y, fit to the points $f_{ij}(x)$ for j = k, ... k + 3 is then evaluated for the given y to obtain the interpolated value $\hat{F}(x,y)$

$$\hat{\mathbf{F}}(\mathbf{x}, \mathbf{y}) = \frac{1}{6} (\mathbf{p}_1 \mathbf{\eta}_k^3 + \mathbf{p}_2 \mathbf{\eta}_k^2 + \mathbf{p}_3 \mathbf{\eta}_k) + \mathbf{p}_4$$

$$\mathbf{\eta}_k = (\mathbf{y} - \mathbf{y}_{k+1})/\Delta \mathbf{y}$$

$$\mathbf{p}_1 = \mathbf{f}_{i,k+3}(\mathbf{x}) - \mathbf{f}_{ik}(\mathbf{x}) + 3 [\mathbf{f}_{i,k+1}(\mathbf{x}) - \mathbf{f}_{i,k+2}(\mathbf{x})]$$

$$\mathbf{p}_2 = 3[\mathbf{f}_{i,k}(\mathbf{x}) - 2\mathbf{f}_{i,k+1}(\mathbf{x}) + \mathbf{f}_{i,k+2}(\mathbf{x})]$$

$$\mathbf{p}_3 = 6\mathbf{f}_{i,k+2}(\mathbf{x}) - 2\mathbf{f}_{i,k}(\mathbf{x}) - 3\mathbf{f}_{i,k+1}(\mathbf{x}) - \mathbf{f}_{i,k+3}(\mathbf{x})$$

$$\mathbf{p}_4 = \mathbf{f}_{i,k+1}$$

To reduce computation time the coefficients a_{ij} , b_{ij} , c_{ij} and d_{ij} are saved as long as successive points (x,y) fall in the same four by four point region of a grid. In addition the four by four point interpolation regions are restricted to starting indices i and k with values 3n + 1, n = 0, 1 Thus the regions do not overlap. This is less accurate than centering the region on each x,y point but requires less frequent computation of the coefficients. At the outer edges of a grid the regions are chosen to extend to the edge but not beyond. If x,y is out of the entire three grid region the nearest four by four point region is used for extrapolation.

The coefficients a_{ij} , b_{ij} , c_{ij} and d_{ij} are stored in two dimensional arrays from IT 106 to IT 109. When they are used, from IT 118 to

INTRP

IT 149 they are used as simple variables $(A(1,1) \equiv All)$ to save time. Also the three dimensional arrays AR1, AR2, and AR3 are used as linear arrays from IT 92 to IT 105. The equivalent three subscripts are shown in the comment at IT 91.

SYMBOL DICTIONARY

Aij	= $A(i,j) = a_{ij}$
AR1	= ARL1 = grid 1
AR2	= $ARL2 = grid 2$
AR 3	= $ARL3 = grid 3$
Bij	$= B(i,j) = b_{ij}$
Cij	$= C(i,j) = c_{ij}$
Dij	$= D(i,j) = d_{ij}$
DX	= Δx for grid being used
DXA	= array of Δx values for the three grids
DY	= Δy for grid being used
DYA	= array of Δy values
EPSCF	= $\epsilon_1 - j\sigma/\omega\epsilon_0$
F 1	$= I_{\rho}^{V}$
F 2	$= \mathfrak{l}_{Z}^{V}$
F3	$= I_{\rho}^{H}$
F4	$= I_{\phi}^{H}$
FX1	= $f_{i,i}(\mathbf{x})$
FX2	$= f_{i,j+1}(x)$
FX3	$= f_{i, j+2}(x)$
FX4	$= f_{i, j+3}(x)$
IADD	= index for linear arrays ARL1, etc.
I ADZ	= initial value for IADD
IGR	= grid number for present x,y
IGRS	= grid number for last x,y
IX	= x index of the grid coordinate just less than x
I XEG	= x index of the upper edge of the last normally
	located interpolation patch when a patch out of the

	normal locations is used at the outer edge of a grid,
	-10000 otherwise
LXS	= 1 plus the x index of the lower edge of 4 by 4 point
	interpolation patch
IY, IYEG, IYS	= same for y as IX, IXEG and IXS
К	= 1, 2, 3, 4 for I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} , I_{ϕ}^{H}
NØ	= NDA for the particular grid
NDA	= array containing the first dimensions of AR1, AR2 and
	AR 3
NDP	= NDPA for a particular grid
NDPA	= array containing the product of the first two
	dimensions in AR1, AR2 and AR3
NXA	= number of x values in each grid
N XM 2	= NXA - 2 for a particular grid
NXMS	= upper x index of the last normally located patch at
	the edge of a grid
NYA, NYM2, NYMS	= same for y as NXA, NXM2 and NXMS
P1, P2, P3, P4	$= P_1, P_2, P_3, P_4$
Х	≖ x
XS	= XSA for the present grid
XS 2	= XSA(2) through equivalence
XSA	= array of values of x at lower edge of each grid (s $_i$)
ХХ	$= \xi_{1}$
XZ	= x_{i+1} for computing ξ_i
Y	= y
YS	= YSA for present grid
YS 3	= YSA(3) through equivalence
ΥSA	= array of values of y at lower edge of each grid (t_i)
ΥY	= n _k
ΥZ	≠ y _{k+1} for computing η _k

1		SUBROUTINE INTRP (X,Y,F1,F2,F3,F4)	T 7	
	С		IT IT	1 2
	C	INTRP USES BIVARIATE CUBIC INTERPOLATION TO OBTAIN THE VALUES OF	IT	3
	с с	4 FUNCTIONS AT THE POINT (X,Y).	IT	4
6		COMPLEX EL E2 E3 E4 A B C D EX1 EX2 EXT EXT D1 DD DD	Ιĭ	5
7		COMPLEX F1.F2,F3,F4,A,B,C,D,FX1,FX2,FX3,FX4,P1,P2,P3,P4,A11,A12,A1 13,A14,A21,A22,A23,A24,A31,A32,A33,A34,A41,A42,A43,A44,B11,B12,B13,	IT	6
8		2B14, B21, B22, B23, B24, B31, B32, B33, B34, B41, B42, B43, B44, C11, C12, C13, C1	IT	7
9		34, C21, C22, C23, C24, C31, C32, C33, C34, C41, C42, C43, C44, D11, D12, D13, D14,	IT	8 9
10		4021,022,023,024,031,032,033,034,041,042,043,044	IT	10
11		COMPLEX AR1,AR2,AR3,ARL1,ARL2,ARL3,EPSCF	ŤТ	11
12		COMMON /GGRID/ AR1(11,10,4), AR2(17,5,4), AR3(9,8,4), EPSCF, DXA(3), DY	IT	12
13 14		1A(3),XSA(3),YSA(3),NXA(3),NYA(3) DIMENSION NDA(3), NDPA(3)	IT	13
15		DIMENSION NDA(3), NDPA(3) DIMENSION A(4,4), $B(4,4)$, $C(4,4)$, $D(4,4)$, $ARL1(1)$, $ARL2(1)$, $ARL3(1)$	IT	14
16		$(1) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$		15
17		EQUIVALENCE $(A(1,1),A11), (A(1,2),A12), (A(1,3),A13), (A(1,4),A14)$	IT TT	16 17
18		EQUIVALENCE $(A(2,1),A21), (A(2,2),A22), (A(2,3),A23), (A(2,4),A24)$	тт	18
19		EQUIVALENCE $(A(3,1), A31), (A(3,2), A32), (A(3,3), A33), (A(3,4), A34)$	тт	19
20		EQUIVALENCE $(A(4,1),A41), (A(4,2),A42), (A(4,3),A43), (A(4,4),A44)$	тт	20
21 22		EQUIVALENCE $(B(1,1),B11)$, $(B(1,2),B12)$, $(B(1,3),B13)$, $(B(1,4),B14)$	IT	21
23		EQUIVALENCE $(B(2,1),B21)$, $(B(2,2),B22)$, $(B(2,3),B23)$, $(B(2,4),B24)$ EQUIVALENCE $(B(3,1),B31)$, $(B(3,2),B32)$, $(B(3,3),B33)$, $(B(3,4),B34)$	IT	22
24		EQUIVALENCE $(B(4,1), B41)$, $(B(4,2), B42)$, $(B(4,3), B43)$, $(B(4,4), B44)$	11	23
25		EQUIVALENCE $(C(1,1),C(1), (C(1,2),C(2), (C(1,3),C(3)), (C(1,4),C(4)))$	ТΤ	24 25
26		EQUIVALENCE $(C(2,1),C21), (C(2,2),C22), (C(2,3),C23), (C(2,4),C24)$	тт	26
27		EQUIVALENCE $(C(3,1),C31), (C(3,2),C32), (C(3,3),C33), (C(3,4),C34)$	тт	27
28 29		EQUIVALENCE $(C(4,1),C41)$, $(C(4,2),C42)$, $(C(4,3),C43)$, $(C(4,4),C44)$	IT	28
30		EQUIVALENCE $(D(1,1),D11)$, $(D(1,2),D12)$, $(D(1,3),D13)$, $(D(1,4),D14)$ EQUIVALENCE $(D(2,1),D21)$, $(D(2,2),D22)$, $(D(1,3),D13)$, $(D(1,4),D14)$	IT	29
31		EQUIVALENCE $(D(2,1),D21)$, $(D(2,2),D22)$, $(D(2,3),D23)$, $(D(2,4),D24)$ EQUIVALENCE $(D(3,1),D31)$, $(D(3,2),D32)$, $(D(3,3),D33)$, $(D(3,4),D34)$	IT	30
32		EQUIVALENCE $(D(4,1),D41)$, $(D(4,2),D42)$, $(D(4,3),D43)$, $(D(4,4),D44)$	L I TT	31 32
33		EQUIVALENCE (ARL1, AR1), (ARL2, AR2), (ARL3, AR3), (XS2, XSA(2)) (YS3	TT.	33
34		1.YSA(3))	IT	34
35		DATA IXS.IYS.IGRS/-10,-10,-10/,DX,DY,XS,YS/1.,1.,0.,0./	IT	35
36 37		DATA NDA/11.17.9/,NDPA/110.85.72/,IXEG.IYEG/0.0/ IF (X.LT.XS.OR.Y.LT.YS) GO TO 1	IT	36
38		IX = INT((X - XS)/DX) + 1	IT	37
39		IY = INT((Y-YS)/DY) + 1	IT IT	38 39
40	С		IT	40
41		IF POINT LIES IN SAME 4 BY 4 POINT REGION AS PREVIOUS POINT, OLD	IT	41
42		VALUES ARE REUSED	IT	42
43 44	L	IF (IX.LT.IXEG.OR.IY.LT.IYEG) GO TO 1	IT	43
45		IF (IABS(IX-IXS).LT.2.AND.IABS(IY-IYS).LT.2) GO TO 12	IT IT	44
46	С		IT	45 46
47		DETERMINE CORRECT GRID AND GRID REGION	IT	47
48			IΤ	48
49	1	IF (X.GT.XS2) GO TO 2	IT	49
50 51		IGR≕1 GO TO 3	IT	50
52	2	IGR=2	IT	51
53	-		IT IT	52 53
54	3	TE (TER ED TORS) on TR (IT	54
55		IGRS=IGR	IT	55
56 57			IΤ	56
57 58			IT	57
59		YS-YSA(TODC)	IT	58
60		NYAG ANYA (TOPS) 2	IT IT	59 60
61		NYM2=NYA(IGRS)-2	İT	61
62		$NXMS = ((NXM2+1)/3) \cdot 3 + 1$	IT	62
63 64			IT	63
- 1			17	64

63	5	NDP=NDPA(IGRS)	IT 65
6	5	IX=INI((X-XS)/DX)+1	IT 66
6		IY=INT((Y-YS)/DY)+1	IT 67
	34	$IXS = ((IX - 1)/3) \cdot 3 + 2$	IT 68
69		IF (IXS.LT.2) IXS=2	IT 69
70		IXEG=-10000	IT 70
7		IF (IXS.LE.NXM2) GO TO 5	IT 71
7:			IT 72
7.		IXEG=NXMS	IT 73
	45	$IYS = ((IY-1)/3) \cdot 3 + 2$	IT 74
7:		IF (IYS.LT.2) IYS=2	IT 75
70		IYEG=-10000	IT 76
71		IF (IYS.LE.NYM2) GO TO 6	IT 77
7			IT 78
	, c	IYEG=NYMS	IT 79
		COMPUTE COEFFETENTS OF A CHIPTE DOLYNOUTAL C THEY FOR THE A COMP	IT 80
	2 C	COMPUTE COEFFICIENTS OF 4 CUBIC POLYNOMIALS IN X FOR THE 4 GRID VALUES OF Y FOR EACH OF THE 4 FUNCTIONS	IT 81
	3 C	VALUES OF I FOR EACH OF THE 4 FUNCTIONS	IT 82
	46	IADZ=IXS+(IYS-3)•ND-NDP	IT 83
8		DO 11 $K=1,4$	IT 84
8		IADZ=IADZ+NDP	IT 85
8		IADD=IADZ	IT 86
81		DO 11 I=1,4	IT 87
8		IADD=IADD+ND	IT 88
91		GO TO (7,8,9), IGRS	IT 89 IT 90
	i c	P1=AR1(IXS-1,IYS-2+I,K)	IT 91
	27	P1=ARL1(IADD-1)	IT 92
9.		P2=ARL1(IADD)	IT 93
9.	4	P3=ARL1(IADD+1)	IT 94
99	5	P4=ARL1(IADD+2)	IT 95
90	5	GO TO 10	IT 96
91	78	P1=ARL2(IADD-1)	IT 97
91	3	P2=ARL2(IADD)	IT 98
95	•	P3=ARL2(IADD+1)	IT 99
10)	P4=ARL2(IADD+2)	IT 100
10	l	GO TO 10	IT 101
10:	29	P1=ARL3(IADD-1)	IT 102
10.	5	P2=ARL3(IADD)	IT 103
10-	4	P3=ARL3(IADD+1)	IT 104
10	5	P4=ARL3(IADD+2)	IT 105
10	5 10	A(I,K)=(P4-P1+3.*(P2-P3))*.16666666667	IT 106
10	7	B(I,K)=(P1-2.*P2+P3)*.5	IT 107
10	3	C(I,K)=P3-(2.*P1+3.*P2+P4)*.16666666667	IT 108
10	9 11	D(I,K)=P2	IT 109
110		XZ=(IXS-1)*DX+XS	IT 110
11		YZ=(IYS-1)*DY+YS	IT 111
	2 C		IT 112
	3 C	EVALUATE POLYMOMIALS IN X AND THEN USE CUBIC INTERPOLATION IN Y	IT 113
	4 C	FOR EACH OF THE 4 FUNCTIONS.	IT 114
	5 C		IT 115
	5 12	XX=(X-XZ)/DX	IT 116
11		YY=(Y-YZ)/DY	IT 117
11		FX1=((A11*XX+B11)*XX+C11)*XX+D11	IT 118
119		FX2=((A21*XX+B21)*XX+C21)*XX+D21	IT 119
12		FX3=((A31*XX+B31)*XX+C31)*XX+D31	IT 120
12		FX4=((A41*XX+B41)*XX+C41)*XX+D41 P1=FX4-FX1+3.*(FX2-FX3)	IT 121
12.		P2=3. • (FX1-2. • FX2+FX3)	IT 122
12		P3=6. *FX3-2. *FX1-3. *FX2-FX4	IT 123
12		F1=((P1*YY+P2)*YY+P3)*YY*.16666666667+FX2	IT 124 IT 125
12		FX1=((A12*XX+B12)*XX+C12)*XX+D12	IT 125
12		FX2=((A22*XX+B22)*XX+C22)*XX+D22	IT 125
12		FX3=((A32•XX+B32)•XX+C32)•XX+D32	IT 128
		······································	- 120

INTRP

INTRP

129	FX4=((A42*XX+B42)*XX+C42)*XX+D42	"T 100
130	P1=FX4-FX1+3.*(FX2-FX3)	T 129
131	P2=3.*(FX1-2.*FX2+FX3)	LT :30
132	P3=6. *FX3-2. *FX1-3. *FX2-FX4	IT 131
133	F2=((P1•YY+P2)•YY+P3)•YY•.16666666667+FX2	IT 132
134	FX1=((A13*XX+B13)*XX+C13)*XX+D13	IT 133
135	FX2=((A23*XX+B23)*XX+C23)*XX+D23	IT 34
136	FXX=((AZ3*XX+BZ3)*XX+CZ3)*XX+DZ3	IT 135
	FX3=((A33*XX+B33)*XX+C33)*XX+D33	IT 136
137	FX4=((A43*XX+B43)*XX+C43)*XX+D43	IT 137
138	P1=FX4-FX1+3.*(FX2-FX3)	IT 138
139	P2=3.*(FX1-2.*FX2+FX3)	IT 139
140	P3=6.*FX3-2.*FX1-3.*FX2-FX4	IT '40
141	F3=((P1*YY+P2)*YY+P3)*YY*.1666666667+FX2	Iī 141
142	FX1=((A14*XX+B14)*XX+C14)*XX+D14	ÎT 142
143	FX2=((A24*XX+B24)*XX+C24)*XX+D24	IT 143
144	FX3=((A34*XX+B34)*XX+C34)*XX+D34	11 143 17 144
145	FX4=((A44*XX+B44)*XX+C44)*XX+D44	IT 145
146	P1=FX4-FX1+3. • (FX2-FX3)	IT 145
147	P2=3.*(FX1-2.*FX2+FX3)	IT 147
148	P3≈6. *FX3-2. *FX1-3. *FX2-FX4	
149	F4=((P1*YY+P2)*YY+P3)*YY*.16666666667+FX2	IT 148
150 .	RETURN	IT 149
151	END	IT 150
101		IT 151-

INTX

PURPOSE

To numerically compute the integral of the function exp(jkr)/kr.

METHOD

For evaluation of the field due to a segment, a local cylindrical coordinate system is defined with origin at the center of the segment and z axis in the segment direction. This geometry is illustrated in the discussion of subroutine GF. Subroutine INTX is called by subroutine EFLD to evaluate the integral

$$G = \int_{-k\Delta/2}^{k\Delta/2} \frac{\exp(-jkr)}{kr} d(kz) ,$$

where

$$r = [\rho'^2 + (z - z')^2]^{1/2}$$
,

and other symbols are defined in the discussion of subroutine GF.

The numerical integration technique of Romberg integration with variable interval width is used (refs. 3 and 4). The Romberg integration formula is obtained from the trapezoidal formula by an iterative procedure (ref. 1). The trapezoidal rule for integration of the function f(x) over an interval (a, b) using 2^k subintervals is

$$T_{0k} = [(b-a)/N][(1/2) f_0 + f_1 + \dots + f_{N-1} + (1/2)f_N],$$

where

$$N = 2^{K}$$

$$f_{i} = f(x_{i})$$

$$x_{i} = a + i(b - a)/N$$

These trapezoidal-rule answers are then used in the iterative formula

$$T_{m,n} = \left(4^{m}T_{m-1,n+1} - T_{m-1,n}\right)/(4^{m}-1)$$

The results $T_{m,n}$ may be arranged in a triangular matrix of the form

$$T_{0,0}$$

 $T_{0,1}$ $T_{1,0}$
 $T_{0,2}$ $T_{1,1}$ $T_{2,0}$
 \vdots \vdots

where the elements in the first column, T_{0k} , represent the trapezoidal rule results, and the elements in the diagonal, T_{k0} , are the Romberg integration results for 2^k subintervals.

Convergence to increasingly more accurate answers takes place down the first column and the diagonal, as well as towards the right along the rows. The row convergence generally provides a more realistic indication of error magnitude than two successive trapezoidal-rule or Romberg answers.

This convergence along the rows is used to determine the interval width in the variable interval-width scheme. The complete integration interval is first divided into a minimum number of subintervals (presently set to 1) and T_{00} , T_{01} , and T_{10} are computed on the first subinterval. The relative difference of T_{01} and T_{10} is then computed, and if less than the error criterion, R_x , T_{10} is accepted as the integral over that interval, and integration proceeds to the next interval. If the difference of T_{01} and T_{10} is too great, T_{02} , T_{11} and T_{20} are computed. The relative difference of T_{11} and T_{20} is then computed, and if less than R_x , T_{20} is accepted as the integral over the subinterval. If the difference of T_{11} and T_{20} is too great, the subinterval is divided in half and the process repeated starting with $T_{
m OO}$ for the left hand, new subinterval. The subinterval is repeatedly halved until convergence to less than R_{x} is found. The process is repeated for successive subintervals until the right-hand side of the integration interval is reached. When convergence has been obtained with a given subinterval size for a few times, the routine attempts doubling the subinterval size to maintain the largest subinterval size that will give the required accuracy. Thus, the routine will use many points in a rapidly changing region of a function and fewer points where the function is smoothly varying.

Since the function to be integrated is complex, the convergence of both real and imaginary parts is tested and both must be less than R_x . The same subinterval sizes are used for real and imaginary parts.

INTX

```
-210-
```

When the field of a segment is being computed at the segment's own center, the length r becomes

$$r = [b^{2} + (z - z')^{2}]^{1/2}$$

where b is the wire radius. For small values of b, the real part of the integrand is sharply peaked and, hence, difficult to integrate numerically. Hence, the integral is divided into the components

$$G' = \int_{-k\Delta/2}^{k\Delta/2} \frac{\exp(-jkr) - 1}{kr} d(kz)$$

$$G'' = \int_{-k\Delta/2}^{k\Delta/2} \frac{1}{kr} d(kz)$$

$$G = G' + G''$$

G' must be computed numerically; however, the integrand is no longer peaked. G", which contains the sharp peak, can be computed as

$$G'' = 2 \log \left(\frac{\sqrt{b^2 + \Delta^2} + \Delta}{b} \right)$$

To further reduce integration time for the self term, the integral of G' is computed from $-k\Delta/2$ to 0, and the result doubled to obtain G'.

SYMBOL DICTIONARY

```
ABS = external routine (absolute value)
ALOG = external routine (natural log)
В
     = wire radius, b/\lambda
     = subinterval size on which T_{00}, T_{01}, ... are computed
DZ
DZOT = 0.5 DZ
EL1 = -k\Delta/2
EL2 = k\Delta/2
     = tolerance for ending the integration interval
EP
FNM = real number equivalent of NM
FNS = real number equivalent of NS
GF
     = external routine (integrand)
G11 = imaginary part of f_1
GlR = real part of f_1
```

C2I = imaginary part of f_2 G2R = real part of f_2 G3I = imaginary part of f_3 G3R = real part of f_3 G4I = imaginary part of f_4 G4R = real part of f_4

G3R = real part of f_3 G4I = imaginary part of f_{4} $G4R = real part of f_{4}$ G5I = imaginary part of f_5 $G5R = real part of f_5$ \mathbf{IJ} = indication of self term integration when equal to zero NM = minimum allowed subinterval size is $k\Delta/NM$ NS = present subinterval size is $k\Delta/NS$ NT = counter to control increasing of subinterval size NTS = larger values retard increasing of subinterval size NX = maximum allowed subinterval size is $k\Delta/NX$ = R_v RX S = Δ/λ SGI = imaginary part of G SGR = real part of G SQRT = external routine (square root) TEST = external routine (computes relative convergence) TE11 = relative difference of T_{01} and T_{10} for imaginary part TELR = relative difference of T_{01} and T_{10} for real part TE2I = relative difference of T_{11} and T_{20} for imaginary part TE2R = relative difference of T_{11} and T_{20} for real part TOOI = imaginary part T_{00} TOOR = real part T_{00} T01I = imaginary part T_{01} TOIR = real part T_{01} TO2I = imaginary part T_{02} $TO2R = real part T_{02}$ T10I = imaginary part T_{10} $T10R = real part of T_{10}$ T111 = imaginary part of T_{11} T11R = real part of T_{11} T201 = imaginary part of T_{20} T20R = real part of T_{20}

Z = integration variable at left-hand side of subinterval ZE = $k\Delta/2$ ZEND = $k\Delta/2 - EP$; EP = tolerance term ZP = integration variable

CONSTANTS

....

 $65536 = 2^{16} = 1$ imit of minimum subinterval size (NM) 1.E-4 = error criterion, R_x

1 2 C	SUBROUTINE INTX (EL1,EL2,B,IJ,SGR,SGI)	IN	1
2 C 3 C		ΙN	2
4 C	INTX PERFORMS NUMERICAL INTEGRATION OF EXP(JKR)/R BY THE METHOD OF	IN	3
5 C	VARIABLE INTERVAL WIDTH ROMBERG INTEGRATION. THE INTEGRAND VALUE IS SUPPLIED BY SUBROUTINE GF.	IN	4
6 C	IS SUILIED BY SUBROUTIVE OF.	ĪN	5
7	DATA NX, NM, NTS, RX/1, 65536, 4, 1, E-4/	IN	6
8	Z=EL1	ΪN	7
9		ΪN	8
10	IF (IJ,EQ.0) ZE=0.	IN	9
11	S=ZE-Z	IN	10
12		IN	11
13		IN	12
	EP=S/(10.*FNM)	IN	13
14		IN	14
15 16	SGR=0.	ΪN	1.5
17	SGI=0. NS=NX	ΪN	16
18	NT=0	IN	17
19		ΪN	18
20 1	CALL GF (Z,G1R,G1I) FNS=NS	IN	19
21	DZ=S/FNS	IN	20
22		IN	21
23		IN	22
24 2	IF (ZP-ZE) 3,3,2	IN	23
24 2		IN	24
26 3	IF (ABS(DZ)-EP) 17,17,3	IN	25
20 3		ΪN	26
28		IN	27
29	CALL GF (ZP,G3R,G3I)	ΙN	28
30	ZP=Z+DZ	IN	29
31 4	CALL GF (ZP,G5R,G5I)	IN	30
	T00R=(G1R+G5R)*DZ0T	ĬN	31
32	$100I = (G1I + G5I) \cdot 0ZOI$	IN	32
33	T01R=(T00R+DZ*C3R)*0.5	IN	33
34 75	T01I=(T00I+DZ*G3I)*0.5	IN	34
35	T10R = (4.0*T01R - T00R)/3.0	IN	35
36 37 C	T10I = (4.0 * T01I - T00I)/3.0	IN	36
37 C 38 C	TEST CONVERCENCE OF & BOTHE DOUDEDO DECULT	ΪN	37
39 C	TEST CONVERGENCE OF 3 POINT ROMBERG RESULT.	IN	38
40	CALL TEST (TOID THOP TELD TOIT THAT TELT A)	ĨN	39
41	CALL TEST (TOIR,TIOR,TEIR,TOII,TIOI,TEII,O.) IF (TEII-RX) 5,5,6	IN	40
42 5	IF (TETR-RX) 8.8.6	IN	41
43 6	ZP=Z+DZ*0.25	IN	42
44	CALL GF (ZP,G2R,G2I)	ΪN	43
45	ZP=Z+DZ = 0.75	IN	44
45	CALL GF (ZP,G4R,G4I)	IN	45
47	T02R=(T01R+DZ0T*(G2R+G4R))*0.5	IN	46
48	$102I \approx (101I + DZOI \cdot (G2I + G4I)) \cdot 0.5$	IN	47
49	T11R = (4.0*T02R - T01R)/3.0	IN IN	48
50	$T_{11I} = (4.0 * T_{02I} - T_{01I})/3.0$	IN	49 50
51	T20R = (16.0 + T11R - T10R)/15.0	IN	51
52	T20I = (16.0 + T11I - T10I)/15.0	IN	52
53 C		IN	53
54 C	TEST CONVERGENCE OF 5 POINT ROMBERG RESULT.	IN	53 54
55 C		IN	54 55
56	CALL TEST (IIIR, T20R, TE2R, TIII, T20I, TE2I, 0.)	IN	56
57	IF (TE2I-RX) 7.7.14	IN	57
58 7	IF (TE2R-RX) 9,9,14	IN	58
59 8	SGR=SGR+TIOR	IN	59
60	SCI=SCI+IIOI	IN	60
61	NT=NT+2	IN	61
62	GO TO 10	IN	62
639	SGR=SGR+T2OR	IN	63
64	SGI=SGI+120I	IN	64

65	61 T 6 T 6	
		IN 65
66 10 67		IN 66
	IF (Z-ZEND) 11,17,17	ÎN 67
68 1		IN 68
69 70	G1I=G5I	IN 69
70	IF (NI-NIS) 1,12,12	IN 70
71 1	2 IF (NS-NX) 1,1,13	IN 71
72 C		IN 72
73 C	DOUBLE STEP SIZE	IN 73
74 C		IN 74
75 13		IN 75
76		IN 76
77	GO TO 1	IN 77
78 14		IN 78
79	IF (NS-NM) 16,15,15	IN 79
80 15		IN 80
81	GO TO 9	IN 81
82 C		IN 82
83 C	HALVE STEP SIZE	IN 83
84 C		IN 84
85 16		IN 85
86	FNS=NS	IN 86
87	DZ=S/FNS	IN 87
88	DZOT=DZ•0.5	IN 88
89	G5R=G3R	IN 89
90	G5I==G3I	IN 90
91	G3R=G2R	IN 91
92	G3I=G2I	IN 92
93	GO TO 4	IN 93
94 17	7 CONTINUE	IN 94
95	IF (IJ) 19,18,19	IN 95
96 C		IN 96
97 C	ADD CONTRIBUTION OF NEAR SINGULARITY FOR DIAGONAL TERM	IN 97
98 C		IN 98
99 18	B SGR=2.*(SGR+ALOG((SQRT(B*B+S*S)+S)/B))	IN 99
100	SGI=2.*SGI	IN 100
101 19		IN 101
102	RETURN	IN 102
103 C		IN 103
104 20	D FORMAT (24H STEP SIZE LIMITED AT Z=,F10.5)	IN 104
105	END	IN 105-
		····

ISEGNO

PURPOSE

To determine the segment number of the mth segment ordered by increasing segment numbers in the set of segments with tag numbers equal to the given tag number. With a given tag of zero, segment number m is returned.

METHOD

Search segments consecutively and check their tag numbers against a given tag.

SYMBOL DICTIONARY

- I = DO loop index
- ICNT = counter
- ITAGI = input tag number (given tag)
- M = input quantity specifying the position in the set of segments with the given tag

CODE LISTING

Image: Second (India, MA) IS IS IS IS IS 2 3 C ISEGNO RETURNS THE SEGMENT NUMBER OF THE MTH SEGMENT HAVING THE IS 3 3 1 1 1 1 1 1 1 3 4 1 <t< th=""><th>1</th><th></th><th>FUNCTION ISEGNO (ITAGI,MX)</th><th>IS</th><th></th></t<>	1		FUNCTION ISEGNO (ITAGI,MX)	IS	
3 C ISEGNO RETURNS THE SEGMENT NUMBER OF THE MTH SEGMENT HAVING THE IS 3 4 C TAG NUMBER ITAGI. IF ITAGI=0 SEGMENT NUMBER M IS RETURNED. IS 4 5 C IS 5 6 COMMON /DATA/ LD.N1.N2.N.NP.M1.M2.M.MP.X(300).Y(300).Z(300).SI(300) IS 6 7 1).BI(300).ALP(300).BET(300).ICON1(300).ICON2(300).JTAG(300).JICONX(IS 7 8 2300).WLAM.IPSYM IS 8 9 IF (MX.GT.0) GO TO 1 IS 9 10 PRINT 6 IS 10 11 STOP IS 10 12 ICNT=0 IS 11 13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 15 15 RETURN IS 15 16 16 2 IF (N.LT.1) GO TO 4 IS 15 16 17 DO 3 I=1.N IS 15 15 16 16 2 IF (N.LT.1) GO TO 4 IS 15 10 17 DO 3 I=1.N IS 15 16 15 10		С			•
4 C TAG NUMBER ITAGI. IF ITAGI=0 SEGMENT NUMBER M IS RETURNED. IS 4 5 C IS 5 6 COMMON /DATA/ LD.N1.N2,N.NP.M1.M2,M.MP.X(300),Y(300),Z(300),SI(300) IS 6 7 1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(IS 7 8 2300),WLAM,IPSYM IS 8 9 IF (MX.GT.0) GO TO 1 IS 9 10 PRINT 6 IS 10 11 STOP IS 10 12 I CNT=0 IS 12 13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 15 15 RETURN IS 15 16 17 D0 3 I=1.N IS 15 16 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 19 10 15 20 16 IF (ICNT.EQ.MX) GO TO 5 IS 20 IS 15 20 17 D0 3 I=1.N IS 15 15 20 18 IF (ITAG(I).NE.ITAGI) GO TO 5 IS 20 21			ISEGNO RETURNS THE SEGMENT NUMBER OF THE MEN SEGMENT HAVENO THE		
S C IS 5 6 COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300) IS 6 7 1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(IS 7 8 2300),WLAM,IPSYM IS 8 9 IF (MX.GT.0) GO TO 1 IS 9 10 PRINT 6 IS 10 11 STOP IS 11 12 I CONT=0 IS 11 13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 15 15 RETURN IS 15 16 17 DO 3 I=1,N IS 15 18 19 ICONT=ICO	-	-			
6 COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 IS 6 7 1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(IS 7 8 2300),WLAM,IPSYM IS 8 9 IF (MX.GT.0) GO TO 1 IS 8 9 PRINT 6 IS 10 11 STOP IS 11 12 ICNT=0 IS 11 13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 15 16 2 IF (N.LT.1) GO TO 4 IS 15 16 2 IF (ITAGI.NE.ITAGI) GO TO 3 IS 18 17 DO 3 I=1,N IS 15 16 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 19 ICNT=ICNT+1 IS 15 16 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 IS 12 24 PRINT 7, ITAGI IS 23 23 S10P IS 24 23 SIOP IS 24 25 RETURN </td <td></td> <td></td> <td>THE ROMBER TRACE. IF TRACE-U SEGMENT NOMBER M IS RETURNED.</td> <td></td> <td></td>			THE ROMBER TRACE. IF TRACE-U SEGMENT NOMBER M IS RETURNED.		
7 1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(IS 7 8 2300),WLAM,IPSYM IS 8 9 IF (MX.GT.0) GO TO 1 IS 9 10 PRINT 6 IS 10 11 STOP IS 11 12 ICNT=0 IS 11 13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 14 15 RETURN IS 16 16 2 IF (N.LT.1) GO TO 4 IS 15 16 2 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 19 ICNT=ICNT+1 IS 15 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 21 21 3 CONTINUE IS 22 23 SIOP IS 23 24 PRINT 7, ITAGI IS 23 24 S ISEGNO=I IS 23 24 S ISEGNO=I IS 24 25 RETURN IS		Ŭ	COMMON (DATA/ LD N1 N2 N NR N1 N2 N NR Y1700) Y1700) Y1700) T1700) CT1700		-
8 2300), WLAM, IPSYM IS 15 8 9 IF (MX.GT.0) GO TO 1 IS 9 10 PRINT 6 IS 10 11 STOP IS 11 12 ICNT=0 IS 11 13 IF (ITAGI.NE.0) GO TO 2 IS 12 14 ISEGNO=MX IS 14 15 RETURN IS 15 16 2 IF (N.LT.1) GO TO 4 IS 15 16 2 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 16 17 DO 3 I=1.N IS 16 IS 17 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 19 16 I CNT=ICNT+1 IS 10 15 20 21 3 CONTINUE IS 21 22 23 STOP IS 23 24 24 PRINT 7, ITAGI IS 23 24 25 RETURN IS 25 22 26 C IS <t< td=""><td></td><td></td><td>$1) = 1 \\ (300) \\ (1) \\ (300) \\ (1) \\ (300) \\$</td><td></td><td>_</td></t<>			$1) = 1 \\ (300) \\ (1) \\ (300) \\ (1) \\ (300) \\$		_
9 IF (MX.GT.0) GO TO 1 IS 9 10 PRINT 6 IS 10 11 STOP IS 11 12 I CNT=0 IS 11 13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 13 15 RETURN IS 15 16 2 IF (N.LT.1) GO TO 4 IS 15 16 2 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 16 17 DO 3 I=1,N IS 16 IS 17 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 17 19 ICNT=ICNT+1 IS 19 IS 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 11 15 20 21 CONTINUE IS 21 22 PRINT 7, ITAGI IS 23 23 STOP IS 23 23 24 25 24 25 24 PRINT 7, ITAGI IS 26 IS 26 2					
10 PRINT 6 IS 10 11 STOP IS 11 12 1 ICNT=0 IS 11 13 IF (ITAGI.NE.0) GO TO 2 IS 13 13 14 ISEGNO=MX IS 13 14 15 RETURN IS 13 14 15 RETURN IS 14 15 16 2 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 14 15 15 RETURN IS 15 14 15 RETURN IS 15 16 16 2 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 17 18 IF (ITAGI).NE.ITAGI) GO TO 5 IS 18 19 10 ONT=ICNT+1 IS 19 10 15 18 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 15 20 21 3 CONTINUE IS 21 22 23 15 22 23					
11 STOP IS 11 12 1 ICNT=0 IS 12 13 IF (ITAGI.NE.0) GO TO 2 IS 13 13 14 ISEGNO=MX IS 13 14 15 RETURN IS 14 15 RETURN IS 14 15 RETURN IS 15 16 2 IF (N.LT.1) GO TO 4 IS 15 16 2 IF (N.LT.1) GO TO 4 IS 16 17 DO 3 I=1.N IS 15 16 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 17 19 ICNT=ICNT+1 IS 19 12 15 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 15 20 21 3 CONTINUE IS 21 22 22 4 PRINT 7, ITAGI IS 22 23 STOP IS 23 23 24 5 ISEGNO=I IS 26 <				- +	-
12 1 ICNT=0 IS 12 13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 13 15 RETURN IS 15 16 2 IF (N.LT.1) GO TO 4 IS 15 16 2 IF (N.LT.1) GO TO 4 IS 16 17 DO 3 I=1.N IS 17 IS 17 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 17 19 ICNT=ICNT+1 IS 19 15 10 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 15 20 21 3 CONTINUE IS 21 15 22 24 PRINT 7, ITAGI IS 23 23 23 25 RETURN IS 25 15 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF ,IS)<					
13 IF (ITAGI.NE.0) GO TO 2 IS 13 14 ISEGNO=MX IS 13 15 RETURN IS 14 16 2 IF (N.LT.1) GO TO 4 IS 15 16 2 IF (N.LT.1) GO TO 4 IS 16 17 DO 3 I=1,N IS 16 17 IS 16 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 17 18 17 IS 18 19 ICNT=ICNT+1 IS 19 IS 17 15 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 15 20 15 20 21 3 CONTINUE IS 21 22 22 23 STOP IS 23 22 4 PRINT 7, ITAGI IS 23 23 23 24 25 RETURN IS 25 24 5 ISEGNO=I IS 24 25 26 IS 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS <td< td=""><td></td><td></td><td>- · - ·</td><td></td><td></td></td<>			- · - ·		
14 ISEGNO=MX IS 14 15 RETURN IS 15 16 2 IF (N.LT.1) GO TO 4 IS 15 17 DO 3 I=1,N IS 16 17 DO 3 I=1,N IS 16 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 17 18 IF (ITAG(I).NE.ITAGI) GO TO 5 IS 18 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 21 3 CONTINUE IS 21 22 4 PRINT 7, ITAGI IS 22 23 STOP IS 23 23 24 5 ISEGNO=I IS 23 25 RETURN IS 25 22 26 C IS 24 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF , I5) IS 29	. –	1			. —
15 RETURN IS 15 16 16 2 IF (N.LT.1) GO TO 4 IS 16 17 DO 3 I=1,N IS 16 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 17 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 19 ICNT=ICNT+1 IS 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 21 3 CONTINUE IS 21 22 4 PRINT 7, ITAGI IS 22 23 STOP IS 23 23 24 5 ISEGNO=I IS 23 25 RETURN IS 25 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF , I5) IS 29					
16 2 IF (N.LT.1) GO TO 4 IS 16 17 DO 3 I=1,N IS 16 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 17 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 19 ICNT=ICNT+1 IS 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 21 3 CONTINUE IS 21 22 4 PRINT 7, ITAGI IS 22 23 STOP IS 23 23 24 5 ISEGNO=I IS 23 25 RETURN IS 25 24 25 RETURN IS 25 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 & GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF , I5) IS 29					
17 D0 3 I=1.N IS 17 18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 19 ICNT=ICNT+1 IS 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 21 3 CONTINUE IS 20 22 4 PRINT 7, ITAGI IS 22 23 STOP IS 23 23 24 5 ISEGNO=I IS 23 25 RETURN IS 25 25 26 C IS 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF , I5) IS 29	-	~			-
18 IF (ITAG(I).NE.ITAGI) GO TO 3 IS 18 19 ICNT=ICNT+1 IS 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 21 3 CONTINUE IS 20 22 4 PRINT 7, ITAGI IS 21 23 STOP IS 23 23 24 5 ISEGNO=I IS 23 25 RETURN IS 25 25 26 C IS 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF , I5) IS 29		Z	3		
19 ICNT=ICNT+1 IS 19 20 IF (ICNT.EQ.MX) GO TO 5 IS 20 21 3 CONTINUE IS 20 22 4 PRINT 7, ITAGI IS 21 23 STOP IS 23 23 24 5 ISEGNO=I IS 23 25 RETURN IS 25 26 C IS 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF , I5) IS 29					17
20 IF (ICNT.EQ.MX) GO TO 5 IS 20 21 3 CONTINUE IS 20 22 4 PRINT 7, ITAGI IS 21 23 STOP IS 22 23 STOP IS 23 24 5 ISEGNO=I IS 23 25 RETURN IS 25 26 C IS 26 27 6 FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS 27 28 1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO) IS 28 29 7 FORMAT (///, 10X,26HNO SEGMENT HAS AN ITAG OF , I5) IS 29				IS	18
21 3CONTINUEIS2122 4PRINT 7, ITAGIIS2223STOPIS2324 5ISEGNO=IIS2425RETURNIS2526 CIS2627 6FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS27281 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS2829 7FORMAT (///,10X,26HNO SEGMENT HAS AN ITAG OF, I5)IS29				IS	19
22 4PRINT 7, ITAGIIS2123STOPIS2324 5ISEGNO=IIS2425RETURNIS2526 CIS2627 6FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS27281 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS2829 7FORMAT (///,10X,26HNO SEGMENT HAS AN ITAG OF, I5)IS29			, ,	IS	20
23STOPIS22245ISEGNO=IIS2425RETURNIS2526CIS26276FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS27281 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS28297FORMAT (///,10X,26HNO SEGMENT HAS AN ITAG OF ,15)IS29				IS	21
24 5ISEGNO=IIS2425RETURNIS2526 CIS2627 6FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS27281 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS2829 7FORMAT (///,10X,26HNO SEGMENT HAS AN ITAG OF .I5)IS29		4	, -	IS	22
25RETURNIS2426CIS2526CIS26276FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS27281A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS28297FORMAT (///,10X,26HNO SEGMENT HAS AN ITAG OF .I5)IS29				IS	23
26 CIS2627 6FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS27281 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS2829 7FORMAT (///,10X,26HNO SEGMENT HAS AN ITAG OF .IS)IS29		5		IS	24
276FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN IS27281 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS28297FORMAT (///.10X,26HNO SEGMENT HAS AN ITAG OF .IS)IS29			RETURN	IS	25
281 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)IS28297FORMAT (///,10X,26HNO SEGMENT HAS AN ITAG OF ,I5)IS29					26
29 7 FORMAT (///.10X.26HNO SEGMENT HAS AN ITAG OF .IS) IS 29		6		IS	27
				IS	28
30 END IS 30-		7		15	29
	30		END	IS	30-

LFACTR

PURPOSE

To perform the Gauss-Doolittle factorization calculations on two blocks of the matrix in core storage. This routine in conjunction with FACIO factors a matrix that is too large for core storage into an upper and lower triangular matrix using the Gauss-Doolittle technique. The factored matrix is used by LUNSCR and LTSOLV to determine the solution of the transposed matrix equation $x^{T}A^{T} = B^{T}$.

METHOD

The basic algorithm used in this routine is presented by Ralston in ref. 1 on pages 411-416. A brief discussion is also given under FACTR in this manual. The main difference between LFACTR and FACTR is that LFACTR is set up to perform the calculations on two blocks of columns of the transposed matrix that reside in core storage. This situation arises when the matrix is too large to fit in core at one time; thus, the matrix is divided into blocks of columns and stored on files. This matrix is then factored into a lower triangular matrix and an upper triangular matrix by the subroutines FACIO and LFACTR. The function of these two subroutines is closely tied together: LFACTR performs the mathematical computations involved in the factorization, while FACIO controls the input and output of matrix blocks in core storage, and, thus, controls the necessary block ordering input to LFACTR. For clarification of the ordering of matrix blocks during factorization, refer to FACIO.

The computations performed in LFACTR are slightly different for three matrix block conditions: (1) block numbers 1 and 2, (2) adjacent matrix blocks, and (3) non-adjacent matrix blocks. If the blocks are numbers 1 and 2, both blocks are factored, and the computations proceed exactly as in FACTR. The only difference between LFACTR and FACTR here is that the two blocks do not form a square matrix, and the row and column indices in LFACTR have not been interchanged as in FACTR. At the end of this stage, both blocks 1 and 2 are completely factored. For case 2, where the blocks are adjacent in the matrix and other than 1 and 2, the first block is assumed factored and is used to complete the factorization of the partially factored second block. The computations start with the first column of the second block and proceed as in FACTR (with the exceptions noted above). If the blocks are not adjacent (case 3), the first block is assumed factored and is used to partially

-217-

factor the second block. Computations start with the first column of the second block. Factorization cannot be completed, since values from the intervening columns are necessary.

CODING

- LF20 LF39 Initialization of loop parameters for the various matrix block conditions.
- LF40 LF99 Loop over columns to be factored or partially factored.
- LF44 LF46 Write column of A in scratch vector D.
- LF49 LF62 Computations for u (see FACTR), where positioning for size is taken into account. The range of i is determined by the matrix blocks used.
- LF69 LF71 For case 3, the partially factored column is stored in A, and a jump to LF100 is made.
- LF73 LF87 For cases 1 and 2, the maximum value in the column is found for positioning.
- LF92 LF94 For cases 1 and 2, ℓ_{ir} (see FACTR) is calculated; limits on i are dependent on blocks.

SYMBOL DICTIONARY

A = array which contains the two blocks of columns of the transposed
matrix in some state of factorization
CONJG = external routine (conjugate of complex numbers)
D = scratch vector, temporary storage of one column
DMAX = maximum value in column
ELMAG = intermediate variable
I = DO loop index
IFLG = small pivot value flag
<pre>IP = array containing positioning information</pre>
IXJ = index
IX1 = first block number, input
IX2 = second block number, input
J = DO loop index
JP1 = J + I
J1 = DO loop limits
J2
J2P1 = J2 + 1

J2P2 = J2 + 2К = DO loop index L1 L2 = logical variables for testing L3] NCOL = number of columns NROW = number of rows PJ = intermediate variables PR R = DO loop index REAL = external routine (real part of a complex number) R1 = DO loop limits, relative column number limits for R2 calculations

In programs using double precision accumulation in the matrix solution, the following double precision variables are used in LFACTR.

CONSTANT

1.E-10 = small value test

LFACTR

1		SUBROUTINE LFACTE (A.NROW, IX1, IX2, IP)	LF	1
2			(5	2
3		LFACTR PERFORMS GAUSS-DOOLITTLE MANIPULATIONS ON THE TWO BLOCKS OF	LF	3
4		THE TRANSPOSED MATRIX IN CORE STORAGE. THE GAUSS-DOOLTTLE	LF	4
5		ALGORITHM IS PRESENTED ON PAGES 411-416 OF A. RAISTON A ETRST	1.5	5
6		COURSE IN NUMERICAL ANALYSIS. COMMENTS BELOW REFER TO COMMENTS IN	LE	6
7		RALSTONS TEXT.	LF	7
8	С		LF	8
9		COMPLEX A, D, AJR	L.F	9
10		INTEGER R,R1,R2,PJ,PR	LF	10
11		LOGICAL L1,L2,L3	I F	11
12		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	L F	12
13	1	CASX,NBBX,NP8X,NLBX,NB8L,NPBL,NLBL	LF	13
14		COMMON /SCRATM/ D(600)	LF	14
15		DIMENSION A(NROW, 1), IP(NROW)	LF	15
16		IFLG=0	LF	16
17	С		LF	17
18	С	INITIALIZE R1,R2,J1,J2	LF	18
19	С		LF	19
20		L1=IX1.EQ.1.AND.IX2.EQ.2	LF	20
21		L2=(IX2-1).EQ.IX1	LF	21
22		L3=IX2.EQ.NBLSYM	LF	22
23		IF (L1) GO TO 1	LF	23
24		GO TO 2	LF	24
25	1	R1=1	LF	25
26		R2=2*NPSYM	LF	26
27		J1=1	LF	27
28		J2=-1	LF	28
29		GO TO 5	LF	29
30	2	R1=NPSYM+1	LF	30
31		R2=2*NPSYM	LF	31
32		J1=(IX1-1)*NPSYM+1	LF	32
33		IF (L2) GO TO 3	LF	33
34		GO TO 4	LF	34
35	3	J2=J1+NPSYM-2	LF	35
36		GO TO 5	LF	36
37	4	J2=J1+NPSYM-1	LF	37
38	5	IF (L3) R2=NPSYM+NLSYM	LF	38
39		DO 16 R=R1,R2	LF	39
40	С		LF	40
41	С	STEP 1	LF	41
42	С		LF	42
43		DO 6 K=J1,NROW	LF	43
44		D(K)=A(K,R)	LF	44
45	6	CONTINUE	LF	45
46			LF	46
47		STEPS 2 AND 3	LF	47
48	С		LF	48
49		IF (L1.OR.L2) J2=J2+1	LF	49
50		IF (J1.GT.J2) GO TO 9	LF	50
51		IXJ=0	LF	51
52			LF	52
53		IXJ=IXJ+1	LF	53
54		PJ=IP(J)	LF	54
55		AJR=D(PJ)	LF	55
56		A(J,R) = AJR	LF	56
57			LF	57
58			LF	58
59			LF	59
60 61		CONTINUE	LF	60
61			LF	61
62 63		CONTINUE	LF	62
Б.) 64			LF	63
24	-		LF	64

					L
65		STEP 4	ŁF	65	
66	С		ŁF	66	
67		J2P1=J2+1	LF	67	
68		IF (L1.OR.L2) GO TO 11	LF	68	
69		IF (NROW, LT, J2P1) GO TO 16	LF	69	
70		DO 10 I=J2P1,NROW	ĹF	70	
71		A(I,R)=D(I)	LF	71	
72	10	CONTINUE	LF	72	
73		GO TO 16	LF	73	
74	11	DMAX=REAL(D(J2P1) CONJG(D(J2P1)))	LF	74	
75		IP(J2P1)=J2P1	LF	75	
76		J2P2=J2+2	LF	76	
77		IF (J2P2.GT.NROW) GO TO 13	LF	77	
78		DO 12 I=J2P2, NROW	LF	78	
79		ELMAG=REAL(D(I) * CONJG(D(I)))	LF	79	
80		IF (ELMAG.LT.DMAX) GO TO 12	LF	80	
81		DMAX=ELMAG	LF	81	
82		IP(J2P1)=I	LF	82	
83	12	CONTINUE	LF	83	
84	13	CONTINUE	LF	84	
85		IF (DMAX.LT.1.E-10) IFLG=1	LF	85	
86		PR=IP(J2P1)	LF	86	
87		A(J2P1,R)=D(PR)	LF	87	
88		D(PR)=D(J2P1)	LF	88	
89	С		LF	89	
90	С	STEP 5	LF	90	
91	С		LF	91	
92		IF (J2P2.GT.NROW) GO TO 15	LF	92	
93		AJR=1./A(J2P1,R)	LF	93	
94		DO 14 I=J2P2,NROW	LF	94	
95		A(I,R)=D(I)*AJR	L۶	95	
96	14	CONTINUE	LF	96	
97	15	CONTINUE	LF	97	
98		IF (IFLG.EQ.0) GO TO 16	LF	98	
99		PRINT 17, J2, DMAX	LF	99	
100		IFLG=0	LF	100	
101	16	CONTINUE	LF	101	
102		RETURN	LF	102	
103	С		LF	103	
104	17	FORMAT (1H ,6HPIVOT(,I3,2H)=,E16.8)	LF	104	
105		END	LF	105-	

LFACTR

LOAD

PURPOSE

To compute the impedances at a given frequency for the loading specified by LD cards.

METHOD

The value of $\lambda Z/\Delta$, where Z is the total impedance on a segment and Δ is the length of the segment, is computed for each loaded segment and stored in the array ZARRAY. The proper impedance formula is chosen by the value of the input quantity LDTYP. These computations are performed from the sequence LO74 to LO96 of the program, and the formulas are:

LDTYP = 0 (series R, L, and C):

$$Z = R + j\omega L + \frac{1}{j\omega C}$$

$$Z' = \frac{\lambda Z}{\Delta} = \frac{R}{\frac{\Delta}{\lambda}} + j2\pi c \left(\frac{L}{\Delta}\right) + \frac{1}{j2\pi c \left(\frac{\Delta}{\lambda}\right)^2 \left(\frac{C}{\Delta}\right)}$$

where c is the speed of light and R, L, and C are input.

LDTYP = 1 (parallel R, L, and C; R, L, and C input):

$$Z' = \frac{1}{\left(\frac{\Delta}{\lambda}\right)\frac{1}{R} + \frac{\Delta}{j2\pi cL} + j2\pi c\left(\frac{\Delta}{\lambda}\right)^2 \left(\frac{C}{\Delta}\right)}$$

LDTYP = 2 and 3 (same as above, but R/Δ , L/Δ , C/Δ are input)

LDTYP = 4 (resistance and reactance input):

$$Z' = \frac{\text{resistance + j reactance}}{\frac{\Delta}{\lambda}}$$

LDTYP = 5 (call another subroutine for wire conductivity calculation)

ABS	= external routine (absolute value of a real number)
	= external routine (imaginary part of a complex number)
CMPLX	= external routine (forms a complex number)
ICHK :	= check flag in diagnosing data errors
ISTEP =	= loading card subscript
IWARN =	= flag checking for multiply loaded segments
	= LDTYP + 1
LDTAG =	= tag number, input quantity
LDTAGF =	= input quantity
LDTAGS -	= LDTAG(ISTEP)
LDTAGT =	= input quantity
LDTYP =	= input quantity specifying loading type
NLOAD -	= number of input loading data cards
PRNT =	= external routine (prints the impedance data in a table)
REAL -	= external routine (takes the real part of a complex number)
TPCJ =	= j $2\pi c$, where c is the speed of light
ZARRAY =	= array containing $\lambda Z/\Delta$ for each segment, dimensioned to the
	maximum number of segments
ZINT =	external routine (calculates the internal impedance of a finitely
	conducting wire)
ZLC	= input quantities, the definitions are a function of the type of
ZLI	loading specified. For the case of series RLC (LDTYP = 0):
ZLR	ZLC = capacitance (farads), ZLI = inductance (henrys), and
	ZLR = resistance (ohms). For the remaining cases, see Part III.
ZT =	= Z' = $\lambda Z/\Lambda$ for one segment; however, variable name is used
	during the calculation of this quantity

CONSTANTS

1.E-20	= floating point zero test	
(0., 1.88365371E+9)	$P) = j2\pi c$, where c is the velocity of light	

LOAD

LOAD

LOAD CALCULATES THE IMPEDANCE OF SPECIFIED SEGMENTS FOR VARIOUS C 2 C TYPES OF LOADING L0 3 C COMPLEX ZARRAY, ZT, TPCJ, ZINT L0 5 C COMMON /DATA/ LD,NI,NZ,N,NP,MI,MZ,M,MP,X(300),Y(300),ITAG(300),ICONX(LO 6 Z0000, MLM, JPSYM L0 10 10 COMMON /DATA/ LD,NI,NZ,N,NP,MI,MZ,M,MP,X(300),Y(300),ITAG(300),ICONX(LO 10 COMMON /DATA/ LD,NI,NZ,N,NP,MI,MZ,M,MP,X(300),ITAG(300),ICONX(LO 10 COMMON /DATA/ LD,NI,CAN,NC(1),LDADF L0 DIMENSION LDIYC(1), LTAGTA(1),LDATAT(1), ZLR(1),ZLR(1),ZLR(1) L1 1 1.2 LC(1), TPCJX(2) L0 DATA TPCJX/O, I.AB3598955E+9/ L0 14 C L0 16 C FINT Z5 L0 16 C C INTALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 22 C C INTROMATION. L0 22 22 10 24 24 Z C INTORDATION. L0 23 24 IARRAY(I)=(0, 0, 0) 24 <th>1</th> <th>с</th> <th>SUBROUTINE LOAD (LDTYP,LDTAG,LDTAGF,LDTAGT,ZLR,ZLI,ZLC)</th> <th>LO</th> <th>1</th>	1	с	SUBROUTINE LOAD (LDTYP,LDTAG,LDTAGF,LDTAGT,ZLR,ZLI,ZLC)	LO	1
4 C TYPES OF LOADING LO 4 5 C LO 5 6 C COMPLEX ZARRAY,ZT,TCJ,ZINT LO 6 7 COMMON (DATA/LD,NI,NZ,N,NP,MI,WZ,M,WP,X(300),Y(300),Z(300),SI(300 LO 7 1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ILCONX(LO 8 7 2030,WLAM, IPSYM LO 10 DIMENSION LOAD/ZARRAY(300),NLODF LO 10 10 DIMENSION LOTP(1). LDIAG(1),LDIAGT(1).LDIAGT(1),ZLR(1),ZLL(1) LO 12 11 ZAC(1), TPCJX(2) LO 13 LO 15 12 COMMON /ZLOAD/ZARRAY(300),NLOAD,NLODF LO 10 ILMENSION LOAD/ZARRAY(300),NLOAD,NLODF LO 10 13 LINENSION LO 12 COMMON /ZLOAD/ZARRAY(300),NLOAD,NLODF LO 10 14 CANCHARTANA DATA TPCJX/01.883698955E+9/ LO 10 10 10 16 C PRINT 25 LO 10 15 10 16 16 C INFGRANTON LO 10 16 10 10 17 C TMFGRANTON LO 10 16 10			10AD CALCULATES THE THREEANCE OF CREATERS STOUGHTS THE		2
S C COMPLEX ZARRAY, ZT, TPCJ, ZINT L0 G 7 COMMON /DATA/ LD,NI,NZ,N,NP,MI,MZ,M,MP,X(300),Y(300),Z(300),JIG0NG (10 G 9 2300],WLAM, IPSYM L0 G 9 2300],WLAM, IPSYM L0 G 11 DAMON /ZARAY(300),ILCONI(300),ICONI(300),JIG0NG (300),ICONI(10 L0 10 11 DAMON /ZARAY(300),NLOOF L0 10 10 12 COMMON /ZARAY(300),ILCONI(300),ILCONI(300),IZGNI(1), ZLR(1),			TYPES OF LOADING		
6 COMPLEX ZARAY_ZI, TPCJ. ZINT L0 5 7 COMMOM /DAY / LD, NI AV, NI AV, M, MY, X(300), Y(300), Z(300), SI(300) L0 7 1), BT(300), ALP(300), BET(300), IGON1 (300), IGON2 (300), JLCONX (10 L0 9 2300), MLAN, IPSYM L0 9 COMMON /ZLOAD/ ZARAY (300), NLOAD, NLODF L0 10 11 DIMENSION LOTP(1), LDTAG(1), LDTAG(1), LDTAGT(1), ZLR(1), ZLI(1) L0 11 13 EQUIYALENCE (TPCJ, IFCJX) L0 12 14 DATA TPCJX/O, I.B8368955E49/ L0 14 15 C PRINT HEADING L0 16 16 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 21 21 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 22 22 DO 1 I=N2,N L0 21 L0 18 24 I ZARRAY (1)=(0.0) L0 22 10 24 24 24 24 24 24 24 24 27 26 26 27 26					
COMMON /DATA/ LD, NI, NZ, N, NP, MI, MZ, M, MP, X(300), Y(300), Z(300), JIGONX(6 9 2300, WLAM, JPSYM 10 10 COMMON /DATA/ LD(300), LICONI, IGON (1300), JIGONX(6 9 COMMON /ZLAD/ ZARRAY(300), LICONA (1300), JIGONX(10 11 L1. XLC(1), IPCJX(2) LDTAFG(1), LDTAG(1), LDTAG(1), LDTAGT(1), ZLR(1), ZLR(1), ZLI(1) 10 12 L2.CC(1), IPCJX(2) L0 13 13 EOUTVALENCE (IPCJ, IPCJX) L0 13 14 DATA TPCJX/O., 1.883698955E+9/ L0 14 15 C PRINT HEADING L0 15 16 C PRINT 25 L0 17 17 C INTGRATA/ LD ARRAY, USED FOR TEMPORARY STORACE OF LOADING L0 22 17 IARRAY(1)=(00.) L0 23 24 1 ZARRAY(1)=(00.) L0 24 26 C CYCLE OVER LOADING CARDS L0 23 27 27 IFFEP-15 L0 10 33 34 NOP=M/NP L0 33			COMPLEX ZARRAY,ZT.TPCJ.ZINT		
8 1).BI(300).ALP(300).IECN1(300).ICON2(300).ITAG(300).ICONX(L0 9 200,WLAN,IPSYM L0 10 DIMENSION LAPSYM L0 11 1.ZL(30).XLAP,ISYM L0 12 COMMON /ZLCAD/ ZARRAY(300).NLOAD,NLODF L0 11 DIMENSION LOTYC(1).LDTAG(1).LDTAGT(1).LDTAGT(1).ZLR(1).ZLL(1) L0 12 COUTVALENCE (TPCJ.YCLX) L0 13 14 DATA TPCJX/01.883698955E+9/ L0 14 15 C PRINT 125 L0 15 16 C INTITICS L0 12 17 C INTITICS L0 12 18 PRINT 25 L0 18 10 18 20 C INTITICS LARRAY USED FOR TEMPORARY STORACE OF LOADING L0 22 21 C INFORMATION. L0 22 22 L0 24 24 LARRAY(1)=(00.) L0 24 25 L0 27 C CYCLE OVER LOADING CARDS L0 28 27 ISTEP=ISTEP+1 L0 26 28 23<	7		COMMON /DATA/ LD, N1, N2, N, NP, M1, M2, M, MP, X(300), Y(300), 7(300), ST(300)	10	
9 2300, WLAW, JPSYM LO 9 0 COMMON /ZLOAO/ ZARAY(300), NLOAD, NLODF 10 10 11 1. ZLC(1), JPCJX(2) LDIAG(1), LDIAG(1), LDIAG(1), ZLR(1), ZLR(1), ZLI(1) 10 12 LZC(1), TPCJX(2) LO 12 13 C DATA TPCJX/01.883698955E+9/ LO 13 15 C PRINT HEADING LO 16 17 C PRINT HEADING LO 16 18 C INTIALIZE D ARRAY, USED FOR TEMPORARY STORACE OF LOADING LO 21 20 C INFORMATION. LO 22 23 O 1 =N2,N LO 23 21 ZARRAY(1)=(00.) LO 23 LO 23 22 I FORMATION. LO 23 24 I ZARRAY(1)=(00.) 25 22 ISIEP=0 LO 25 26 C 27 23 I f (INARN.EQ.1) PRINT 26 LO 33 I f (INARN.EQ.1) PRINT 26 LO 33	8		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(10	
COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF LO IO 1 DIMENSTON LOTYC(1), LDTAG(1), LDTAGT(1), ZLR(1), ZLI(1) LO 11 1 . ZLC(1), TPCJX(2) LO 12 1 DATA TPCJX/0., 1.883698955E+9/ LO 14 16 C PRINT HEADING LO 16 17 C LO 16 16 18 PRINT 25 LO 18 10 18 19 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING LO 22 21 C INFORMATION. LO 23 24 I ZARRAY(1)=(00.) LO 23 25 DO 1 I=N2, N LO 23 24 IZARRAY(1)=(00.) LO 23 26 IWARN=0 LO 23 24 IZARRAY(1)=(0.0.) 27 28 C 29 151EP=0 LO 28 30 I FT (INSTP:LE.NLOAD) GO TO 5 LO 33 34 NOP=N/NP LO 33			2300), WLAM, IPSYM		
12 1. ZLG(1). TPCJX(2) 10 12 13 EQUIVALENCE (TPCJ. TPCJX) 10 13 14 DATA TPCJX(0.,1.883698955E+9/ 10 14 15 C NO 15 10 14 15 C PRINT HEADING 10 16 10 16 16 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING 10 22 10 11 10 16 12 11 12 12 12 11 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 10 12 12 12 14 12 12 12 14 12			COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF	10	
13 EQUIVALENCE (TPCJ,TPCJX) L0 13 14 DATA TPCJX/0.,1.883698955E+9/ L0 14 15 C PRINT HEADING L0 15 16 C PRINT 25 L0 16 17 C INTIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 20 20 C INTIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 21 21 C INFORMATION. L0 22 23 D0 1 I=NZ,N L0 22 24 1 ZARRAY(I)=(00.) L0 22 25 IWARN=0 L0 23 24 1 ZARRAY(I)=(00.) L0 23 25 IWARN=0 L0 25 26 C L0 25 27 C YCLE OVER LOADING CARDS L0 28 28 ISTEP=0 L0 28 31 IF (HYARN E0.1) PRINT 26 L0 31 33 IF (HYARN E0.1) O TO 4 L0 33 34 NOP=N/NP L0 34			DIMENSION LDTYP(1), LDTAG(1), LDTAGF(1), LDTAGT(1), ZLR(1), ZLI(1)	ŁO	11
14 DATA TPCJX/0.,1.883698955E+9/ L0 13 15 C PRINT HEADING L0 15 16 C PRINT 25 L0 16 17 C L0 15 L0 16 18 PRINT 25 L0 16 L0 16 19 C INTITALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 21 21 C INFORMATION. L0 22 L0 21 22 C LO L0 22 L0 22 24 I ZARRAY(1)=(00.) L0 23 L0 22 25 DO 1 I=N2,N L0 L0 23 24 I ZARRAY(1)=(00.) L0 24 L0 25 25 C CYCLE OVER LOADING CARDS L0 27 L0 28 25 I STEP=0 L0 29 L0 29 L0 29 36 DO 3 I = I, P L0 L0 33 LF (MAR-EQ.1) PRINT 26 L0 33 37				LO	12
15 C PRINT HEADING L0 15 16 C INTIALIZE DARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 16 17 C INTIALIZE DARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 20 20 INTIALIZE DARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 21 21 C INFORMATION. L0 22 22 C LO 10 21 23 DO 1 I=M2,N L0 24 L0 22 24 I ZARRAY(1)=(00.) L0 22 23 L0 24 25 IWARN=0 L0 25 L0 26 L0 25 25 ISTEP=5TEPH L0 28 L0 27 L0 28 26 ISTEP=0 L0 29 33 IF (HARANCO.1) PRINT 26 L0 31 37 IF (STEP.LE.NLOAD) GO TO 5 L0 33 L0 33 36 DO 3 I=I,MP L0 33 33 IF (HOP.EO.1) GO TO 4 L0 35 36 DO 3 L=1,MP				LO	13
16 C PRINT HEADING L0 16 17 C L0 17 17 C L0 17 18 PRINT 25 L0 18 19 C L0 17 20 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 22 21 C INFORMATION. L0 23 22 C L0 11=N2,N L0 22 23 D0 1 T=N2,N L0 22 24 1 ZARRAY(1)=(00.) L0 22 25 G IWARN=0 L0 22 26 C C C CYCLE OVER LOADING CARDS L0 28 27 G ISTEP=0 L0 28 30 2 ISTEP=1STEP+1 L0 30 31 IF (INTP-LE.N.LOAD) GO TO 5 L0 31 32 IF (INP.ED.L.S.N.LOAD) GO TO 4 L0 33 33 IF (N1+2+M1.GT.0) GO TO 4 L0 33 34 NOP=N/P L0 34 354 NOP=N/P L0 35 36 L1=1 L0 37 37 ZT=ZARRAY(1) L0 38 40 L1=L+NP L0 38 41 3 ZARAY(L1)=ZT L0 44 42 4 RETURN L0 44 43 5 IF (LOTYP(ISTEP).LE.S.) GO TO 6 L0 44 44 5 STOP L0 44 <			DATA (FCJX/U.,1.8838989351+9/		
17 C L0 10 18 PRINT 25 L0 19 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 20 C INTORMATION. L0 21 C INTORMATION. L0 22 C D0 1 1=N2,N L0 23 D0 1 I=N2,N L0 24 1 ZARRAY(I)=(0.,0.) L0 25 IWARN=0 L0 26 C L0 27 C CYCLE OVER LOADING CARDS L0 28 C L0 22 29 ISTEP=0 L0 28 30 2 ISTEP=STEP+1 L0 30 31 IF (ITSTF).LE.NLOAD) GO TO 5 L0 31 32 IF (NPARN.EQ.1) PRINT 26 L0 33 33 IF (NP.ED.1) GO TO 4 L0 35 34 NOP=N/NP L0 36 35 JF (NOP.ED.1) GO TO 4 L0 37 36 L1=1 L0 38 L1=1 35 JF (NOP.ED.1) GO TO 4 L0 37			PRINT HEADING		
18 PRINT 25 L0 18 19 C INITALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 20 21 C INFORMATION. L0 21 23 D0 1 I=N2,N L0 22 24 1 ZARRAY[19(0) L0 22 25 JWARN=0 L0 22 26 L0 22 L0 23 27 C CYCLE OVER LOADING CARDS L0 25 28 ISTEP=0 L0 28 29 ISTEP=1STEP+1 L0 30 31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (NPO.EQ.1) PRINT 26 L0 33 33 IF (NPO.EQ.1) GO TO 4 L0 35 34 NOPEN/NP L0 36 35 IF (NOP.EQ.1) GO TO 4 L0 37 36 D0 3 12=2,NOP L0 37 37 ZT=ZARRAY(L1)=ZT L0 41 41 ZARRAY(L1)=ZT L0 42 41 ZARRAY(L1)=ZT L0 44 42 RETURN L0 44 43 STOF L0 44 44 RETURN L0 45 55 C SEARCH SEGMENTS					
19 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING LO 19 21 C INFORMATION. LO 21 22 C LO 22 LO 22 23 DO 1 I=N2,N LO 22 LO 22 24 1 ZARRAY(I)=(00.) LO 22 25 IWARN=0 LO 22 26 C LO 22 27 C CYCLE OVER LOADING CARDS LO 28 29 ISTEP=0 LO 29 ISTEP=1STEP+1 LO 30 30 IF (INTR.E0.1) PRINT 26 LO 31 IF (INT.E0.1) GO TO 4 LO 33 31 IF (NP.E0.1) GO TO 4 LO 35 IF (NP.E0.1) GO TO 4 LO 36 33 IF (NP.E0.1) GO TO 4 LO 36 LO 37 34 NOP=N/NP LO 36 LO 37 35 LIF (INT.E0.1) GO TO 4 LO 37			PRINT 25		
20 C INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING L0 21 21 C LNFORMATION. L0 21 22 C L0 21 L0 22 23 D0 1 I=N2,N L0 22 24 1 ZARRAY(I)=(0.,0.) L0 22 25 IWARN=0 L0 22 26 C L0 22 27 C CYCLE OVER LOADING CARDS L0 22 28 C L0 23 29 ISTEP=0 L0 28 30 2 ISTEP=1STEP+1 L0 30 31 IF (ISTEP:LE.NLOAD) GO TO 5 L0 31 32 IF (IWARN.EQ.1) PRINT 26 L0 33 33 IF (NP-E0.1) GO TO 4 L0 33 34 NOP=N/NP L0 34 35 IF (NOP.E0.1) GO TO 4 L0 35 36 D0 3 I=1, NP L0 35 37 ZT=ZARRAY(I) L0 35 38 L1=1 L0 36 39 D0 3 L2=2, NOP L0 37 41 3 ZARRAY(L)=ZT L0 44 42 4 RETURN L0 40 43 5 IF (LDTYP(ISTEP).LE.S) GO TO 6 L0 43 44 PETURY L0 44 45 STOP L0 45 46 LOTAGS=LDTAG(ISTEP) L0 45 50 C	19	С			
21 C INFORMATION. IO 21 22 C D0 1 I=N2, N IO 23 23 IO 1 ZARRAY(I)=(0.0.) IO 23 24 1 ZARRAY(I)=(0.0.) IO 23 24 1 ZARRAY(I)=(0.0.) IO 23 25 IVMARN=0 IO 24 IO 25 26 C IO IO 25 IO 26 27 C CYCLE OVER LOADING CARDS IO 20 21 SIFEP=0 IO 28 29 ISTEP=0 IO 20 21 SIFEP=1STEP+1 IO 30 30 11 IF (ISTEP.LE.NLOAD) GO TO 5 IO 30 31 IF (INPARN.EO.1) PRINT 26 IO 33 33 IF (NP.E.O.1) GO TO 4 IO 33 33 IF (NP.E.O.1) GO TO 4 IO 34 NOP=N/NP IO 36 34 NOP=N/NP IO 35 IF (NO.P.EO.1) GO TO 4 IO 37 35 IF (NO.P.EO.1) GO TO 4 IO 35 IO 36 IO 36 35 IF (NP.E.E.NED.ON IO 35 IO 36	20	С	INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING		
23 D0 1 I=N2,N L0 23 24 1 ZARRAY(I)=(0.0.) L0 24 25 IWARN=0 L0 25 26 C L0 25 27 C CYCLE OVER LOADING CARDS L0 25 28 C L0 25 29 ISTEP=0 L0 28 31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (INT=Yent.GE.NLOAD) GO TO 4 L0 33 34 NOP=N/NP L0 34 35 IF (NT=Yent.GE.OF 0.4 L0 35 36 D0 3 I=1.NP L0 35 37 ZT=ZARRAY(I) L0 35 38 LI=I L0 38 39 D0 3 L=2.2.NOP L0 38 41 ZARRAY(L1)=ZT L0 41 42 RETURN L0 42 43 S IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27. LDTYP(ISTEP) L0 44 45 STOP L0 44 46 LDTAGES=LDTAG(ISTEP) L0 45 47 JUMP=LDTYP(ISTEP).LE.5) GO TO 7 L0 45 48 ICHK=0 L0 45			INFORMATION.		
24 1 ZARRAY(I)=(00.) L0 24 25 IWARN=0 L0 25 26 C L0 26 27 C CYCLE OVER LOADING CARDS L0 27 28 C L0 26 L0 27 29 ISTEP=0 L0 28 L0 29 30 2 ISTEP=ISTEP+1 L0 30 10 11 11 10 30 31 IF (INARN.EQ.1) PRINT 26 L0 32 13 15 10 33 33 IF (NOP.EQ.1) GO TO 4 L0 33 34 NOP=M/NP L0 34 34 NOP=M/NP L0 35 15 14 10 35 35 IF (NOP.EQ.1) GO TO 4 L0 35 16 10 35 35 IF (NOP.EQ.1) GO TO 4 L0 35 16 10 35 36 D0 3 L2=2, NOP L0 35 16 10 37 37 ZT=ZARAY(L1)=ZT L0 10 <				LO	22
25 IWARN=0 L0 25 26 C L0 26 27 C CYCLE OVER LOADING CARDS L0 27 28 C L0 28 L0 27 29 ISTEP=0 L0 28 L0 27 30 2 ISTEP=ISTEP+1 L0 29 31 IF (ISTEP:LE.NLOAD) GO TO 5 L0 31 L0 32 33 IF (INTR.EQ.1) PRINT 26 L0 33 L0 33 34 NOP=N/NP L0 34 L0 33 35 IF (NP.EQ.1) GO TO 4 L0 35 L0 32 36 D0 3 I=1,NP L0 36 L0 37 37 ZT=ZARRAY(I) L0 35 L0 38 40 LI=LI+NP L0 38 L0 38 41 ZARRAY(L1)=ZT L0 40 41 42 RETURN L0 41 42 RETURN ZARRAY(L1)=ZT L0 41 42 RETURN <			•	LO	23
26 C L0 23 27 C CYCLE OVER LOADING CARDS L0 27 28 C L0 23 29 ISTEP=0 L0 23 30 2 ISTEP=ISTEP+1 L0 30 31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (IWARN.EQ.1) PRINT 26 L0 32 33 IF (N1+2*M1.GT.0) GO TO 4 L0 32 34 NOP=N/NP L0 34 35 IF (NOP.EO.1) GO TO 4 L0 35 36 DO 3 I=1,NP L0 36 37 ZT=ZARAY(I) L0 37 38 L1=I L0 38 39 DO 3 L2=2,NOP L0 40 41 3 ZARRAY(L1)=ZT L0 40 42 4 RETURN L0 41 43 5 IF (LOTYP(ISTEP).LE.S) GO TO 6 L0 42 44 PRINT 27, LDTYP(ISTEP) L0 44 45 STOP L0 45 46 6 LDTAGS=LDTAG(ISTEP) L0 47 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 47 51 F (LDTAGS.NE.0) CO TO 7 L0 52 52 L1=N2 L0 47 53 L2=N L0 52 54 IF (LDTAGS.NE.0) CO TO 7 L0 53 55 IF (LDTAGF(ISTEP)					
27 C CYCLE OVER LOADING CARDS L0 27 28 C L0 28 29 ISTEP=0 L0 28 30 2 ISTEP=ISTEP+1 L0 30 31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (TWAR.EQ.1) PRINT 26 L0 32 33 IF (N1+2*M1.GT.0) GO TO 4 L0 33 34 NOP=N/NP L0 34 35 IF (N0P.E0.1) GO TO 4 L0 35 36 DO 3 I=1,NP L0 35 37 ZT=ZARRAY(I) L0 35 38 L1=I L0 38 39 DO 3 L2=2,NOP L0 38 40 L1=L1+NP L0 40 41 3 ZARRAY(L1)=ZT L0 41 42 4 RETURN L0 40 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27, LDTYP(ISTEP) L0 44 45 STOP L0 45 46 6 LDTAGS=LDTAG(ISTEP) L0 45 51 C L0 48 52 L1=N2 L0 49 53 L2=N L0 45 54 G LDTAGS=LDTAG(ISTEP) L0 45 55 L2 L1=N2 L0 45 56 L1=LAGF (ISTEP).E0.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 53 57 L2=LDTAGF(ISTEP) L0 55 </td <td></td> <td></td> <td>IWARN-0</td> <td></td> <td></td>			IWARN-0		
28 C L0 22 29 ISTEP=0 L0 29 30 2 ISTEP=ISTEP+1 L0 30 31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (NARN.EQ.1) PRINT 26 L0 32 33 IF (N1+2*M1.GT.0) GO TO 4 L0 33 34 NOP=N/NP L0 34 35 IF (NOP.EO.1) GO TO 4 L0 35 36 DO 3 I=1,NP L0 38 37 ZT=ZARRAY(I) L0 38 38 L1=I L0 38 39 DO 3 L2=2,NOP L0 34 41 3 ZARRAY(L1)=ZT L0 41 42 4 RETURN L0 42 45 STOP L0 44 45 STOP L0 44 46 6 LDTAGS=LDTAG(ISTEP) L0 44 47 JUMP=LDTYP(ISTEP)+1 L0 44 48 G LOTAGS=LDTAG(ISTEP) L0 45 51 C L0 L0 45 52 L1=N2 L0 L1=L0 L0 45 53 L2=N L0 45 L0 45 54 IF (LDTAGS.NE.O) GO TO 7 L0 55 55 IF (LDTAGF(ISTEP).E0.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 56 L1=LDTAGF(ISTEP) L0 54 57 L2=LDTAGT(ISTEP) L0 55 58 IF (L1.G.T.N1) GO TO			CYCLE OVER LOADING CARDS		
29 ISTEP=0 L0 29 30 2 ISTEP=ISTEP+1 L0 30 31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (INVARN.E0.1) PRINT 26 L0 32 33 IF (INVARN.E0.1) OG TO 4 L0 33 34 NOP=N/NP L0 34 35 IF (NOP.EO.1) GO TO 4 L0 35 36 D0 3 I=1.NP L0 35 37 ZT=ZARRAY(I) L0 35 38 L1=I L0 37 39 D0 3 L2=2.NOP L0 38 41 ZARRAY(L1)=ZT L0 41 42 RETURN L0 42 44 RETURN L0 43 45 STOP L0 44 46 LDTAGS=LDTAG(ISTEP) L0 44 47 JUMP=LDTYP(ISTEP)+1 L0 45 48 C L0 45 50 51 C SEARCH SEGMENTS FOR PROPER ITAGS L0 45 52					
30 2 ISTEP=ISTEP+1 L0 30 31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (IWARN.EQ.1) PRINT 26 L0 33 33 IF (N+2*M1.GT.0) GO TO 4 L0 33 34 NOP=N/NP L0 34 35 IF (NOP.EO.1) GO TO 4 L0 35 36 D0 3 I=1,NP L0 35 37 ZI=ZARRAY(I) L0 35 38 L1=I L0 38 39 D0 3 L2=2,NOP L0 38 40 L1=L1+NP L0 40 41 ZARRAY(L1)=ZT L0 40 42 4 RETURN L0 41 43 ZARRAY(L1)=ZT L0 41 44 PRINT 27, LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27, LDTYP(ISTEP) L0 45 45 STOP L0 46 46 LDTAGS=LDTAG(ISTEP) L0 46 47 JUMP=LDTYP(ISTEP)+1 L0 47	29		ISTEP=0		
31 IF (ISTEP.LE.NLOAD) GO TO 5 L0 31 32 IF (IWARN.EQ.1) PRINT 26 L0 32 33 IF (IN+2*M1.GT.0) GO TO 4 L0 33 34 NOP=N/NP L0 35 35 IF (NOP.EQ.1) GO TO 4 L0 35 36 DO 3 = 1, NP L0 35 37 ZT=ZARRAY(I) L0 37 38 L1=I L0 33 40 L1=L1+NP L0 38 40 L1=L1+NP L0 40 41 ZARRAY(L1)=ZT L0 40 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27. LDTYP(ISTEP) L0 44 42 45 STOP L0 44 45 46 LDTAGS=LDTAG(ISTEP) L0 46 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 51 C L0 47 L0 52 53 L2=N L0 52 L0 53 54 IF (LDTAGS.EQ.0) GO TO 7 L0 53 55 IF (LDTA	30	2	ISTEP=ISTEP+1		
32 IF (TWARN.EQ.1) PRINT 26 L0 32 33 IF (N1+2*M1.GT.0) GO TO 4 L0 33 34 NOP=N/NP L0 35 35 IF (NOP.EO.1) GO TO 4 L0 35 36 D0 3 I=1,NP L0 36 37 $ZT=ZARRAY(I)$ L0 37 38 L1=I L0 38 39 DO 3 L2=2,NOP L0 40 41 3 ZARRAY(L1)=ZT L0 40 41 3 ZARRAY(L1)=ZT L0 40 42 4 RETURN L0 42 42 4 RETURN L0 42 44 PRINT 27, LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27, LDTYP(ISTEP) L0 45 45 STOP L0 45 46 LDTAGS=LDTAG(ISTEP) L0 46 47 JUMP=LDTYP(ISTEP)+1 L0 47 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 55 51 C <td></td> <td></td> <td></td> <td></td> <td></td>					
34 NOP=N/NP L0 34 35 IF (NOP.E0.1) GO TO 4 L0 35 36 DO 3 I=1,NP L0 35 36 DO 3 I=1,NP L0 35 37 TI=ZARRAY(I) L0 37 38 L1=I L0 38 39 DO 3 L2=2,NOP L0 38 40 L1=L1+NP L0 40 41 ZARRAY(L1)=ZT L0 41 42 4 RETURN L0 42 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 42 44 PRINT 27, LDTYP(ISTEP) L0 44 45 STOP 44 5 STOP L0 45 46 LDTAGS=LDTAG(ISTEP) L0 46 45 STOP L0 46 L0 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 ICHK=0 L0 52 51 C L2=N L0 53 L0 53 52					
35 IF (NOP.EQ.1) GO TO 4 LO 35 36 DO 3 I=1,NP LO 36 37 ZT=ZARRAY(I) LO 37 38 L1=I LO 37 39 DO 3 L2=2,NOP LO 39 40 L1=1+NP LO 40 41 3 ZARRAY(L1)=ZT LO 40 42 A RETURN LO 43 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 LO 43 44 PRINT 27. LDTYP(ISTEP) LO 44 45 STOP LO 45 46 6 LDTAGS=LDTAG(ISTEP) LO 46 47 JUMP=LDTYP(ISTEP)+1 LO 47 48 ICHK=0 LO 48 49 C LO 47 49 C LO 50 51 C LO 50 52 L1=N2 LO 50 53 L2=N LO 52 54 IF (LDTAGS.NE.0) GO TO 7 LO 54 55 LF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 LO 55 56 L1=LDTAGF(ISTEP) LO 57 S5 57				LO	33
36 D0 3 I=1,NP L0 35 37 ZT=ZARRAY(I) L0 37 38 L1=I L0 38 39 D0 3 L2=2,NOP L0 39 41 3 ZARRAY(L1)=ZT L0 40 41 3 ZARRAY(L1)=ZT L0 41 42 4 RETURN L0 42 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 42 44 PRINT 27. LDTYP(ISTEP) L0 44 45 STOP L0 45 46 LDTAGS=LDTAG(ISTEP) L0 45 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 47 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 48 51 C L0 47 L0 50 52 L1=N2 L0 51 L0 51 53 L2=N L0 53 L0 53 54 IF (LDTAGS.NE.0) GO TO 7 L0 53 L0 53 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 55 L1=LDTAGF(ISTEP) L0 57 58 56			•	LO	34
37 ZT=ZARRAY(I) L0 37 38 L1=I L0 38 39 D0 3 L2=2,NOP L0 39 40 L1=L1+NP L0 40 41 3 ZARRAY(L1)=ZT L0 41 42 4 RETURN L0 42 43 5 IF (LOTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27. LDTYP(ISTEP) L0 44 45 STOP L0 45 46 6 LDTAGS=LDTAG(ISTEP) L0 45 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 48 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 51 C S1 L0 53 52 L1=N2 L0 50 L0 53 53 L2=N L0 53 L0 53 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 53 55 S4 IF (LDTAGF(ISTEP) L0 57 56 L1=LOTAGF(ISTEP) L0 57 L0 57 57 L2=LDTAGT(ISTEP) L0 57					
38 L1=I L0 37 39 D0 3 L2=2,NOP L0 39 40 L1=L1+NP L0 40 41 3 ZARRAY(L1)=ZT L0 41 42 4 RETURN L0 42 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27. LDTYP(ISTEP) L0 44 45 STOP L0 45 46 6 LDTAGS=LDTAG(ISTEP) L0 45 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 49 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 51 C L0 L0 52 53 L2=N L0 L0 52 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 53 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 56 57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 50 60 STOP L0 50 6			•		
39 DO 3 L2=2,NOP LO 39 40 L1=L1+NP LO 40 41 3 ZARRAY(L1)=ZT LO 41 42 4 RETURN LO 42 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 LO 43 44 PRINT 27, LDTYP(ISTEP) LO 45 45 STOP LO 45 46 6 LDTAGS=LDTAG(ISTEP) LO 46 47 JUMP=LDTYP(ISTEP)+1 LO 47 48 ICHK=0 LO 49 50 C SEARCH SEGMENTS FOR PROPER ITAGS LO 50 51 C L0 LO 53 52 L1=N2 LO 52 L0 52 53 L2=N LO 53 LO 53 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 LO 55 56 L1=LDTAGF(ISTEP) LO 57 S5 57 L2=LOTAGT(ISTEP) LO 57 S6 58 JF (LDTAGS.NE.0) GO TO 7 LO 58 S9 59 PRINT 29 LO 50 S7 50 STOP LO 58 S6					
40 L1=L1+NP L0 40 41 3 ZARRAY(L1)=ZT L0 40 42 4 RETURN L0 41 42 4 RETURN L0 42 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27. LDTYP(ISTEP) L0 44 45 STOP L0 45 46 6 LDTAGS=LDTAG(ISTEP) L0 45 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 48 90 C SEARCH SEGMENTS FOR PROPER ITAGS L0 51 C L0 49 6 L1=N2 L0 50 51 C L0 51 52 L1=N2 L0 52 53 L2=N L0 53 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 L1=LDTAGF(ISTEP) L0 56 57					
41 3 ZARRAY(L1)=ZT L0 40 42 4 RETURN L0 42 43 5 IF (LDTYP(ISTEP).LE.S) GO TO 6 L0 43 44 PRINT 27. LDTYP(ISTEP) L0 44 45 STOP L0 45 46 6 LDTAGS=LDTAG(ISTEP) L0 45 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 49 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 51 C L1=N2 L0 51 52 L2=N L0 52 L0 52 53 L2=N L0 53 L0 53 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 56 55 L1=LDTAGF(ISTEP) L0 57 L0 56 56 L1=LDTAGF(ISTEP) L0 57 L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59<					
42 4 RETURN L0 42 43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 L0 43 44 PRINT 27. LDTYP(ISTEP) L0 44 45 STOP L0 45 46 6 LDTAGS=LDTAG(ISTEP) L0 45 47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 48 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 49 51 C L0 50 51 L0 52 52 L1=N2 L0 52 L0 52 53 L2=N L0 53 54 IF (LDTAGS.NE.0) GO TO 7 L0 55 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 55 IF (LDTAGF(ISTEP) L0 57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 58 59 GO 59 60 510 L0 60 60	41	3			
43 5 IF (LDTYP(ISTEP).LE.5) GO TO 6 LO 43 44 PRINT 27. LDTYP(ISTEP) LO 44 45 STOP LO 45 46 6 LDTAGS=LDTAG(ISTEP) LO 45 47 JUMP=LDTYP(ISTEP)+1 LO 47 48 ICHK=0 LO 48 90 C SEARCH SEGMENTS FOR PROPER ITAGS LO 49 50 C SEARCH SEGMENTS FOR PROPER ITAGS LO 50 51 C SEARCH SEGMENTS FOR PROPER ITAGS LO 50 51 C SEARCH SEGMENTS FOR PROPER ITAGS LO 50 52 L1=N2 LO 52 L0 52 53 L2=N LO 52 L0 53 54 IF (LDTAGS.NE.0) GO TO 7 LO 55 54 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 LO 55 56 L1=LDTAGF(ISTEP) LO 56 57 L2=LOTAGT(ISTEP) LO 58 57 IF (L1.GT.N1) GO TO 7 LO 58 59 <td< td=""><td>42</td><td>4</td><td></td><td></td><td></td></td<>	42	4			
45 STOP LO 45 46 6 LDTAGS=LDTAG(ISTEP) LO 46 47 JUMP=LDTYP(ISTEP)+1 LO 47 48 ICHK=0 LO 48 49 C LO 49 50 C SEARCH SEGMENTS FOR PROPER ITAGS LO 49 51 C L1=N2 LO 50 52 L1=N2 LO 51 LO 52 53 L2=N LO 52 L0 53 54 IF (LDTAGS.NE.0) GO TO 7 LO 53 L0 54 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 LO 55 56 L1=LDTAGF(ISTEP) LO 57 L0 55 57 L2=LDTAGT(ISTEP) LO 57 L0 58 58 IF (L1.GT.N1) GO TO 7 LO 58 59 PRINT 29 LO 59 60 STOP LO 60 LO 60 10 60 61 7 DO 17 I=L1.L2 LO <td></td> <td></td> <td></td> <td>LO</td> <td></td>				LO	
46 6 LDTAGS=LDTAG(ISTEP) LO 45 47 JUMP=LDTYP(ISTEP)+1 LO 47 48 ICHK=0 LO 48 49 C LO 48 50 C SEARCH SEGMENTS FOR PROPER ITAGS LO 49 51 C SEARCH SEGMENTS FOR PROPER ITAGS LO 50 51 C SEARCH SEGMENTS FOR PROPER ITAGS LO 50 52 L1=N2 LO 51 LO 52 53 L2=N LO 52 L0 53 54 IF (LDTAGS.NE.0) GO TO 7 LO 54 54 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 LO 55 56 L1=LDTAGF(ISTEP) LO 57 LO 56 57 L2=LDTAGT(ISTEP) LO 57 LO 58 58 IF (L1.GT.N1) GO TO 7 LO 58 59 PRINT 29 LO 59 60 STOP LO 60 LO 61 LO 61 61 <				LO	44
47 JUMP=LDTYP(ISTEP)+1 L0 47 48 ICHK=0 L0 48 49 C L0 48 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 49 51 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 51 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 52 L1=N2 L0 51 L0 52 53 L2=N L0 52 L0 52 54 IF (LDTAGF.ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 54 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 56 L1=LDTAGF(ISTEP) L0 57 L0 56 57 L2=LDTAGT(ISTEP) L0 57 L0 58 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 59 60 STOP L0 60 L0 60 L0 61 61 7 D0 17 I=L1.L2 L0 61 L0 62				LO	45
48 ICHK=0 L0 48 49 C L0 48 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 49 51 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 51 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 52 L1=N2 L0 51 L0 52 53 L2=N L0 52 L0 52 54 IF (LDTAGS.NE.0) GO TO 7 L0 53 L0 54 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 56 L1=LDTAGF(ISTEP) L0 56 57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 59 60 STOP L0 60 61 7 D0 17 I=L1.L2 L0 61 62 IF (LDTAGS.EQ.0) GO TO 8 L0 62 L0 62					
49 C L0 43 50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 49 51 C L0 50 52 L1=N2 L0 51 53 L2=N L0 53 54 IF (LDTAGS.NE.0) GO TO 7 L0 53 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 56 L1=LDTAGF(ISTEP) L0 57 57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 59 60 STOP L0 60 61 7 D0 17 I=L1.L2 L0 61 62 IF (LDTAGS.EQ.0) GO TO 8 L0 61					
50 C SEARCH SEGMENTS FOR PROPER ITAGS L0 50 51 C L0 50 52 L1=N2 L0 51 53 L2=N L0 52 54 IF (LDTAGS.NE.0) GO TO 7 L0 53 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 56 L1=LDTAGF(ISTEP) L0 56 57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 59 60 STOP L0 60 61 7 D0 17 I=L1.L2 L0 61 62 IF (LDTAGS.EQ.0) GO TO 8 L0 62					
51 C L0 51 52 L1=N2 53 L2=N 54 IF (LDTAGS.NE.0) GO TO 7 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 56 L1=LDTAGF(ISTEP) 57 L2=LDTAGT(ISTEP) 58 IF (L1.GT.N1) GO TO 7 59 PRINT 29 60 STOP 61 7 61 7 61 7 61 7 61 7 61 7 61 10 62 IF (LDTAGS.EQ.0) GO TO 8			SEARCH SEGMENTS FOR PROPER ITAGS		
52 L1=N2 L0 52 53 L2=N L0 53 54 IF (LDTAGS.NE.0) GO TO 7 L0 54 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 L0 55 56 L1=LDTAGF(ISTEP) L0 56 57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 59 60 STOP L0 60 61 7 D0 17 I=L1.L2 L0 61 62 IF (LDTAGS.EQ.0) GO TO 8 L0 62	51	С			
53 L2=N LO 53 54 IF (LDTAGS.NE.0) GO TO 7 LO 54 55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 LO 55 56 L1=LDTAGF(ISTEP) LO 56 57 L2=LDTAGT(ISTEP) LO 57 58 IF (L1.GT.N1) GO TO 7 LO 58 59 PRINT 29 LO 59 60 STOP LO 60 61 7 DO 17 I=L1.L2 LO 61 62 IF (LDTAGS.EQ.0) GO TO 8 LO 62			L1=N2		
55 IF (LDTAGF(ISTEP).EQ.0.AND.LDTAGT(ISTEP).EQ.0) GO TO 7 LO 55 56 L1=LDTAGF(ISTEP) LO 56 57 L2=LDTAGT(ISTEP) LO 57 58 IF (L1.GT.N1) GO TO 7 LO 58 59 PRINT 29 LO 59 60 STOP LO 60 61 7 DO 17 I=L1.L2 LO 61 62 IF (LDTAGS.EQ.0) GO TO 8 LO 62				LO	
56 L1=LDTAGF(ISTEP) L0 56 57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 59 60 STOP L0 60 61 7 D0 17 I=L1.L2 L0 61 62 IF (LDTAGS.EQ.0) GO TO 8 L0 62					
57 L2=LDTAGT(ISTEP) L0 57 58 IF (L1.GT.N1) GO TO 7 L0 58 59 PRINT 29 L0 59 60 STOP L0 60 61 7 D0 17 I=L1,L2 L0 61 62 IF (LDTAGS.EQ.0) GO TO 8 L0 62					
58 IF (L1.GT.N1) GO TO 7 LO 58 59 PRINT 29 LO 59 60 STOP LO 60 61 7 DO 17 I=L1,L2 LO 61 62 IF (LDTAGS.EQ.0) GO TO 8 LO 62					
59 PRINT 29 L0 59 60 STOP L0 60 61 7 D0 17 I=L1,L2 L0 61 62 IF (LDTAGS.EQ.0) GO TO 8 L0 62					
60 STOP LO SF 61 7 DO 17 I=L1, L2 LO 60 62 IF (LDTAGS, EQ.0) GO TO 8 LO 61 63 IF (LDTAGS, EQ.0) GO TO 8 LO 62			. ,		
61 7 D0 17 I=L1, L2 L0 61 62 IF (LDTAGS, EQ.0) GO TO 8 L0 62 61 JC (LDTAGS, EQ.0) GO TO 8 L0 62					
62 IF (LDTAGS.EQ.0) GO TO 8					
LO 63					
	60		IF (LUTAUS.NE.LTAG(1)) GO TO 17	LO	63

64		IF (LDTAGF(ISTEP).EQ.0) GO TO 8	ŁŌ	64
65 66			LO	65
67		IF (ICHK.GE.LDTAGF(ISTEP).AND.ICHK.LE.LDTAGT(ISTEP)) GO TO 9 GO TO 17	ŁÖ	66
68	8	ICHK=1	LO	67
69			LO	68
70		CALCULATION OF LAMDA.IMPED. PER UNIT LENGTH, JUMP TO APPROPRIATE	LO	69
71		SECTION FOR LOADING TYPE	LO	70
72		CROTTON FOR EORDING THE	LO	71
73	9	GO TO (10,11,12,13,14,15), JUMP	LO	72
74	10	ZT=ZLR(ISTEP)/SI(I)+TPCJ*ZLI(ISTEP)/(SI(I)*WLAM)	LO	73
75		IF (ABS(ZLC(ISTEP)).GT.1.E-20) ZT=ZT+WLAM/(TPCJ*SI(I)*ZLC(ISTEP))	LO	74
76		GO TO 16	LO	75
77	11	ZT=TPCJ*SI(I)*ZLC(ISTEP)/WLAM	L0 L0	76 77
78		IF (ABS(ZLI(ISTEP)).GT.1.E-20) ZT=ZT+SI(I)*WLAM/(TPC.**7LT(TSTEP))	LO	78
79		IF (ABS(ZLR(ISTEP)).GT.1.E-20) ZT=ZT+SI(I)/ZLR(ISTEP)	LO	79
80		ZT=1./ZT	LO	80
81		GO TO 16	LO	81
82	12	ZT=ZLR(ISTEP)+WLAM+TPCJ+ZLI(ISTEP)	LO	82
83		IF (ABS(ZLC(ISTEP)).GT.1.E-20) ZT=ZT+1./(TPCJ*SI(I)*SI(I)*ZLC(ISTE	LO	83
84		1P))	LO	84
85 86	17		LO	85
87	13	ZT=TPCJ*SI(I)*SI(I)*ZLC(ISTEP)	LO	86
88		IF (ABS(ZLI(ISTEP)).GT.1.E-20) ZT=ZT+1./(TPCJ*ZLI(ISTEP)) IF (ABS(ZLR(ISTEP)).GT.1.E-20) ZT=ZT+1./(ZLR(ISTEP)*WLAM)	LO	87
89		ZT=1./ZT	LO	88
90		GO TO 16	LO	89
91	14	ZT=CMPLX(ZLR(ISTEP),ZLI(ISTEP))/SI(I)	LO	90
92		GO TO 16	LO	91
93	15	ZT=ZINT(ZLR(ISTEP)*WLAM.8I(I))	LO LO	92 93
94	16	IF ((ABS(REAL(ZARRAY(I)))+ABS(AIMAG(ZARRAY(I)))).GT.1.E-20) IWARN=	10	94
95		11	LÕ	95
96		ZARRAY(I)=ZARRAY(I)+ZT	LO	96
97	17	CONTINUE	LO	97
98		IF (ICHK.NE.O) GO TO 18	LO	98
99		PRINT 28, LDTAGS	LO	99
100	~	STOP	ί0	100
101 102			LO	
102		PRINTING THE SEGMENT LOADING DATA, JUMP TO PROPER PRINT	LO	
104	18	GO TO (19,20,21,22,23,24), JUMP	LO	
105	19	CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),ZLR(ISTEP),ZLI(ISTEP)	LO	104
106	12	1),ZLC(ISTEP),0.,0.,0.,7H SERIES,7)		
107		GO TO 2	LO LO	
108	20	CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),ZLR(ISTEP),ZLI(ISTEP	10	108
109		1),ZLC(ISTEP),0.,0.,0.,8HPARALLEL,8)	ιõ	
110		GO TO 2	10	110
111	21	CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),ZLR(ISTEP),ZLI(ISTEP	LO	111
112		1).ZLC(ISTEP).0.,0.,0.,18HSERIES (PER METER),18)	LO	
113		GO TO 2	LO	113
114	22	CALL PRNT (LDTAGS.LDTAGF(ISTEP),LDTAGT(ISTEP),ZLR(ISTEP),ZLI(ISTEP)	LO	114
115		1).ZLC(ISTEP).0.,00.,20HPARALLEL (PER METER),20)	LO	
116	23	GO TO 2	LO	116
118	20	CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),0.,0.,0.,ZLR(ISTEP), IZLI(ISTEP),0.,15HFIXED IMPEDANCE,15)		
119			LO	
120	24	CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),0.,0.,0.,0.,0.,ZLR(I	LO	119
121	<u> </u>	ISTEP),6H WIRE,6)	LO	
122		GO TO 2	LO	
123	с		LO	123
\$24	25	FORMAT (//,7X,8HLOCATION,10X,10HRESISTANCE,3X,10HINDUCTANCE,2X,11H	LO	124
125		1CAPACITANCE,7X,16HIMPEDANCE (OHMS),5X,12HCONDUCTIVITY.4X,4HTYPE./.	LO	125
126		24X.4HITAG.10H FROM THRU,10X.4HOHMS.8X.6HHENRYS.7X.6HFARADS.8X.4HRE	LO	126
127		3AL.6X.9HIMAGINARY,4X,10HMHOS/METER)	LO	127

LOAD

FORMAT (/,10X,74HNOTE, SOME OF THE ABOVE SEGMENTS HAVE BEEN LOADED LO 128 128 26 1 TWICE - IMPEDANCES ADDED) 129 LO 129 FORMAT (/,10X,46HIMPROPER LOAD TYPE CHOOSEN, REQUESTED TYPE IS ,I3 LO 130 130 27 131 1) LO 131 FORMAT (/,10X,50HLOADING DATA CARD ERROR, NO SEGMENT HAS AN ITAG = LO 132 132 28 133 1,15) LO 133 FORMAT (63H ERROR - LOADING MAY NOT BE ADDED TO SEGMENTS IN N.G.F. LO 134 134 29 135 1 SECTION) LO 135 136 END LO 136-

PURPOSE

To solve the matrix equation $X^{R}LU = B^{R}$, where R denotes a row vector and L and U are the lower and upper triangular matrices stored as blocks on files.

METHOD

The L and U triangular matrices are written in a square array, where the l's on the diagonal of the L matrix are suppressed. The array is stored by blocks of columns in ascending order on file IFL1 and descending order on file IFL2. The solution procedure is as follows. First solve the equation

$$Y^{R}U = B^{R}$$
(1)

then

$$X^{R}L = Y^{R}, \qquad (2)$$

since $X^{R}LU = B^{R}$. The solutions of equations (1) and (2) are straightforward, since both matrices are triangular. In particular for equation (1),

$$y_{j}^{R} = \frac{1}{u_{j,j}} \left(b_{j}^{R} - \sum_{i=1}^{j-1} y_{i}^{R} u_{i,j} \right) \qquad j = 1, \dots, n$$

and similarly for equation (2).

Several right-hand side vectors may be stored in the two dimensional array B. The forward and backward substitution is then done on each vector in the loops from LT 23 to LT 34 and LT 43 to LT 56. This can be much faster than calling LTSOLV for each vector since the files IFL1 and IFL2 are read only once. This feature is used in computing $A^{-1}B$ for the NGF solution. It is not used with the multiple excitations for a receiving pattern or to compute the driving point interaction matrix in NETWK but could reduce the out-of-core solution time in these cases.

-227-

Row interchanges were used to position elements for size in factoring the transposed structure matrix; therefore, the elements in the solution vector X^R are not in the original locations. Using the IX array (filled by LUNSCR), the vector can be put back into the original order. The integer contained in IX(J) is the index of the original location of the parameter now in the jth location. The solution vector is overwritten on the input right-hand side vector B^R.

SYMBOL DICTIONARY

A	= array for matrix blocks
В	= B ^R , right-hand side and solution
I 2	= number of words in a block
IFLl	= file with blocks in normal order
IFL2	= file with blocks in reversed order
IX	= solution unscramble vector
IXBLK 1	= block number
J	= row index
JST	= initial value for J
К 2	= number of columns in a block
ΚP	= column index
NEQ	= total number of equations
NRH	= number of right-hand side vectors in B
NROW	= row dimension of A (number of equations in a symmetric section)
SUM	■ summation result

1	SUBROUTINE LTSOLV (A, NROW, IX, B, NEQ, NRH, IFL1, IFL2)	LT	•
2 C		LΤ	1 2
3 C '	LTSOLV SOLVES THE MATRIX EQ. Y(R)*LU(T)=B(R) WHERE (R) DENOTES ROW		3
4 C	VECTOR AND LU(T) DENOTES THE LU DECOMPOSITION OF THE TRANSPOSE OF	LT	4
5 C	THE ORIGINAL COEFFICIENT MATRIX. THE LU(T) DECOMPOSITION IS	LT	5
6 C	STORED ON TAPE 5 IN BLOCKS IN ASCENDING ORDER AND ON FILE 3 IN	LΤ	6
7 C	BLOCKS OF DESCENDING ORDER.	LT	7
8 C		LT	8
9	COMPLEX A, B, Y, SUM	ĻΤ	9
10	COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I		10
11	1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	LT	11
12 13	COMMON /SCRATM/ Y(600)	LT	12
13 14 C	DIMENSION A(NROW,NROW), B(NEQ,NRH), IX(NEQ)	LT	13
15 C	FORWARD SUBSTITUTION	LT LT	14 15
16 C	FORMARD SUBSTITUTION	LT	16
17	I2=2*NPSYM*NROW	LT	17
18	DO 4 IXBLKI=1,NBLSYM	LT	18
19	CALL BLCKIN (A, IFL1, 1, 12, 1, 121)	LT	19
20	K2=NPSYM	LT	20
21	IF (IXBLK1.EQ.NBLSYM) K2=NLSYM	LT	21
22	JST=(IXBLKI-1)*NPSYM	LT	22
23	DO 4 IC=1,NRH	LŤ	23
24	TZL=L	LT	24
25	DO 3 K=1,K2	LT	25
26	L=1ML	LT	26
27	1+L=L	LT	27
28	SUM=(0.,0.)	LT	28
29	IF (JM1.LT.1) GO TO 2	LT	29
30	DO $1 = 1, JM1$	LT LT	30
311 322	SUM=SUM+A(I,K)•B(I,IC) B(J,IC)=(B(J,IC)-SUM)/A(J.K)	LT	31 32
33 3	CONTINUE	LT	33
34 4	CONTINUE	LT	34
35 C		LT	35
36 C	BACKWARD SUBSTITUTION	LT	36
37 C		LT	37
38	JST=NROW+1	LT	38
39	DO 8 IX8LK1=1,N8LSYM	LT	39
40	CALL BLCKIN (A,IFL2,1,I2,1,122)	LT	40
41	K2=NPSYM	LŤ	41
42	IF (IXBLK1.EQ.1) K2=NLSYM	ŁT	42
43	DO 7 IC=1,NRH	LT 	43
44	KP=K2+1	LT	44
45		LT	45
46 47	DO 6 K=1,K2 KP=KP-1	LT	46 47
47	JP1=J	LT	48
49		LT	49
50	SUM=(0.,0.)	LT	50
51	IF (NROW.LT.JP1) GO TO 6	LT	51
52	DO 5 I=JP1,NROW	LT	52
53 5	SUM=SUM+A(I,KP)*B(I,IC)	LT	53
54	B(J,IC)=B(J,IC)-SUM	LT	54
55 6	CONTINUE	LT	55
56 7	CONTINUE	LT	56
57 8	JST=JST-K2	LT	57
58 C		LT	58
59 C	UNSCRAMBLE SOLUTION	LT	59 60
60 C	00 10 IC-1 NPH	LT	50 61
61 62	DO 10 IC=1.NRH DO 9 I=1.NROW	LT	62
63	IXI=IX(I)	LT	63
64 9	Y(IXI)=9(I,IC)	LT	64

65 66 10	DO 10 I=1,NROW	LT	65
67 67	B(I,IC)=Y(I) RETURN	LT	
68	END	LT ኒፐ	67 68~

LUNSCR

PURPOSE

To unscramble the lower triangular matrix of the factored out-of-core matrix and to determine the appropriate ordering of the unknowns. The unscrambled factored matrix is written in blocks on file IU3 in ascending order and on file IU4 in descending order.

METHOD

During factorization by LFACTR, the elements in the lower triangular matrix L were not explicitly arranged in accordance with the row interchanges used in positioning for size during the calculations. Specifically, as the factorization proceeds by columns from left to right in the matrix, row rearrangements in the r^{th} column are not explicitly performed in the left r - 1 columns; rather, positioning information is stored in the IP array. For the in-core calculations, these rearrangements are included during the final solution (subroutine SOLVE). For the out-of-core case, rearrangement during the solution (subroutine LTSOLV) is inconvenient, since the transposed system $x^rA^t = B^r$ is being solved, where r signifies a row vector.

The procedure for unscrambling the L matrix is as follows. p_k is the positioning information contained in IP(K). Then for the rth column, let t be a temporary variable:

$$t = l_{k,r}$$

$$l_{p_k,r} \text{ overwrites } l_{k,r}$$

$$t \text{ overwrites } l_{p_k,r} \text{ for } k = r + 1, \dots, n - 1$$

Since row interchanges were used on the transposed matrix, the positions of the unknowns in the equations have changed. The final arrangement is determined by performing interchanges on a vector of integers. Specifically, let

$$x_{i} = i \quad i = 1, \dots, n_{i}$$

then set

 $t = x_k$

```
x overwrites x
pk
```

t overwrites x for k = 1, ..., n

The integer now contained in x_i specifies the original placement of the i^{th} unknown.

SYMBOL DICTIONARY

A	= array for matrix blocks
11	= first word of matrix block
I 2	= last word of matrix block
IP	= array of pivot index data
IU2	= input file
IU3	= output file, blocks in normal order
IU4	= output file, blocks in reversed order
IX	= array xi
IXBLKl	= block number
KA NOP NROW	<pre>= increment to locate the KKth submatrix in case of symmetry = number of symmetric sections = row dimension of A</pre>

.

					LUN
1		SUBROUTINE LUNSCR (A, NROW, NOP, IX, IP, IU2, IU3, IU4)	LU	1	
	C C	S /P WHICH INSCRAMPLICE CODMUNITY FOR FRANKING	LU	2	
	c	S/R WHICH UNSCRAMBLES, SCRAMBLED FACTORED MATRIX	LU	3	
5		COMPLEX A, TEMP	LU	4	
6			LU	5	
7		COMMON /MATPAR/ ICASE,NBLOKS,NPBLK,NLAST,NBLSYM,NPSYM,NLSYM,IMAT,I 1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL		6	
8		DIMENSION A(NROW, 1), IP(NROW), IX(NROW)	LU	7	
9		$I_{1=1}$	LU	8	
10		I2=2*NPSYM*NROW	LU	9	
11		NM1=NROW-1	LU	10	
12		REWIND IU2	LU	11	
13		REWIND IU3	LU LU	12	
14		REWIND IU4	LU	13	
15	n	DO 9 KK=1,NOP	LU	14 15	
16		KA=(KK-1)*NROW	LU	16	
17		DO 4 IXBLK1=1,NBLSYM	LU	17	
18		CALL BLCKIN (A,IU2,I1,I2,1,121)	LŬ	18	
19		K1=(IXBLK1-1)•NPSYM+2	LŬ	19	
20		IF (NM1.LT.K1) GO TO 3	LU	20	
21		J2=0	LU	21	
22		DO 2 K=K1, NM1	LU	22	
23		IF (J2.LT.NPSYM) J2=J2+1	LU	23	
24 25			LU	24	
26		DO 1 J=1,J2 TEMP=A(K,J)	LU	25	
27			LU	26	
28		A(K,J)=A(IPK,J) A(IPK,J)=TEMP	LU	27	
29		CONTINUE	LŲ	28	
	2	CONTINUE	LU	29	
	3	CONTINUE	LU	30	
32		CALL BLCKOT (A.IU3.I1.I2.1.122)	LU	31	
33		CONTINUE	LU	32	
34		DO 5 IXBLK1=1, NBLSYM	LU	33	
35		BACKSPACE IU3	LU	34	
36		IF (IXBLK1.NE.1) BACKSPACE IU3	LU	35	
37		CALL BLCKIN (A, IU3, I1, I2, 1, 123)	LU LU	36	
38		CALL BLCKOT (A, IU4, I1, I2, 1, 124)	LU	37	
39	5	CONTINUE	LU	38 39	
40		DO 6 I=1,NROW	LU	40	
41		IX(I+KA)=I	LU	41	
42		CONTINUE	LÜ	42	
43		DO 7 I=1, NROW	LŪ	43	
44		IPI=IP(I+KA)	LU	44	
45		IXT=IX(I+KA)	LU	45	
46		IX(I+KA)=IX(IPI+KA)	LU	46	
47 48		IX(IPI+KA)=IXT	LU	47	
40		CONTINUE	LU	48	
50		IF (NOP.EQ.1) GO TO 9 NB1=NBLSYM-1	LU	49	
51		SKIP NB1 LOGICAL RECORDS FORWARD	LU	50	
52	C	DO 8 IXBLK1=1.NB1	LU	51	
53		CALL RICKTN (A THA TH TO 1 195)	LU	52	
54		CONTINUE	LU	53	
55		CONTINUE	LU	54	
56				55	
57		REWIND THIS	LU	56	
58			LU	57 5 P	
59		PETHON .	LU LU	58 59	
60		END	LU LU	59 60-	
			- 4	40-	

LUNSCR

MOVE

PURPOSE

To rotate and translate a previously defined structure, either moving original segments and patches or leaving the original fixed and producing new segments and patches.

METHOD

The formal parameters ROX, ROY, ROZ are the angles of rotation about the x, y, and z axes, respectively, and XS, YS, ZS are the translation distances in the x, y, and z directions. Angles are in radians, and a positive angle represents a right-hand rotation. The structure is first rotated about the x axis by ROX, then about the y axis by ROY, then about the z axis by ROZ, and finally translated by XS, YS, ZS. These operations transform a point with coordinates x, y, z to x', y', z', where

$$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{z'} \end{pmatrix} = \begin{pmatrix} \mathbf{T}_{11} & \mathbf{T}_{12} & \mathbf{T}_{13} \\ \mathbf{T}_{21} & \mathbf{T}_{22} & \mathbf{T}_{23} \\ \mathbf{T}_{31} & \mathbf{T}_{32} & \mathbf{T}_{33} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} + \begin{pmatrix} \mathbf{x}_{s} \\ \mathbf{y}_{s} \\ \mathbf{z}_{s} \end{pmatrix}$$

where

 $\begin{array}{rcl} T_{11} &=& \cos \ \phi \ \cos \ \theta \\ T_{12} &=& \cos \ \phi \ \sin \ \theta \ \sin \ \psi \ - \ \sin \ \phi \ \cos \ \psi \\ T_{13} &=& \cos \ \phi \ \sin \ \theta \ \cos \ \psi \ + \ \sin \ \phi \ \sin \ \psi \\ T_{21} &=& \sin \ \phi \ \cos \ \theta \\ T_{22} &=& \sin \ \phi \ \sin \ \theta \ \sin \ \psi \ + \ \cos \ \phi \ \cos \ \psi \\ T_{23} &=& \sin \ \phi \ \sin \ \theta \ \sin \ \psi \ + \ \cos \ \phi \ \sin \ \psi \\ T_{31} &=& - \ \sin \ \theta \\ T_{32} &=& \cos \ \theta \ \sin \ \psi \\ T_{33} &=& \cos \ \theta \ \sin \ \psi \end{array}$

with

 $\psi = ROX$ () = ROY $\phi = ROZ$ $X_{s} = XS$ $Y_{s} = YS$ $Z_{s} = ZS$

This transformation is applied to those wire segments from segment number i to the last defined segment in COMMON/DATA/. Thus, if i is greater sthan 1, the segments from 1 to $\frac{1}{s}$ - 1 are unaffected. All patches are transformed.

NRPT is the structure repetition factor. If NRPT is zero, the transformed segment and patch coordinates overwrite the original coordinates so that the structure is moved with nothing left in the original location. If NRPT is greater than zero, the transformed coordinates are written on the ends of the arrays in COMMON/DATA/ and the process repeated NRPT times so that NRPT new structures are formed, each shifted from the previous one by the specified transformation, while the original structure is unchanged.

CODING

......

MO18	Adjust symmetry flag if structure is rotated about the x or
	y axis. If the ground plane flag is also set on the GE
	card, symmetry will not be used in the solution.
MO19 - MO3	3 Compute transformation matrix.
M037 - M06	Transform segment coordinates.
MO63 - MO9	3 Transform patch coordinates.

MO94 - MO97 Set parameters to no-symmetry condition if NRPT > 0 or IX > 1.

SYMBOL DICTIONARY

ABS	= external routine (absolute value)
COS	= external routine (cosine)
CPH	$= \cos \phi$
CPS	$= \cos \Psi$
СТН	$=\cos\theta$
IR	= DO loop index, array index for original patch
ISEGNO	= external routine (searches segment tag numbers)
ITGI	= increment applied to segment tag numbers as segments are
	transformed
ITS	= i is the first occurring segment in COMMON/DATA/ with tag ITS
IX	= i
11	= lower DO loop limit for I (initially II = i_{s})
К	= increment to segment number for transformed segment
KR	= array index for new patch

LDI	= LD + 1
NRP	= upper DO loop limit for IR
NRPT	= repetition factor
ROX	= Ψ (radians)
ROY	= θ
ROZ	= φ
SIN	= external routine (sine)
SPH	$= \sin \phi$
SPS	= sin Ψ
STH	= $\sin \theta$
TIX	<u>^</u>
T1Y	= arrays containing components of \hat{t}_1 for patches
T1Z 🕽	
T2X	<u>^</u>
T2Y	= arrays containing components of \hat{t}_2 for patches
T2 Z]	
XI	= old x coordinate
XS	= x _s
XX	= T ₁₁
XY	$= T_{12}$
XZ	$= T_{13}$
X2(I)	= x coordinate of end 2 of segment I
ΥI	= old y coordinate
YS	= y _s
YX	= T ₂₁
YY	$= T_{22}$
YZ	$= T_{23}$
Y2(I)	= y coordinate of end 2 of segment I
ZI	= old Z coordinate
ZS	= Z s
ZX	= T ₃₁
ZY	= T ₃₂
ZZ	$= T_{33}$
Z2(I)	= Z coordinate of end 2 of segment I

SUBROUTINE MOVE (ROX, ROY, ROZ, XS, YS, ZS, ITS, NRPT, ITGI) 1 MO 1 2 C мо 2 3 C SUBROUTINE MOVE MOVES THE STRUCTURE WITH RESPECT TO ITS MO 3 4 C COORDINATE SYSTEM OR REPRODUCES STRUCTURE IN NEW POSITIONS. мо 4 5 C STRUCTURE IS ROTATED ABOUT X,Y,Z AXES BY ROX,ROY,ROZ MO 5 6 C RESPECTIVELY, THEN SHIFTED BY XS, YS, ZS MO 6 7 C мо 7 8 COMMON /DATA/ LD.N1.N2.N.NP.M1.M2.M.MP.X(300),Y(300).Z(300).SI(300 MO 8 9 1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(MO 9 10 2300).WLAM, IPSYM MO 10 11 COMMON /ANGL/ SALP(300) мо 11 12 DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1), X2(1), Y MO 12 13 12(1), Z2(1)MO 13 EQUIVALENCE (X2(1),SI(1)), (Y2(1),ALP(1)), (Z2(1),BET(1)) 14 MO 14 15 EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON MO 15 16 12), (T2Z, ITAG) MO 16 17 IF (ABS(ROX)+ABS(ROY).GT.1.E-10) IPSYM=IPSYM*3 MO 17 18 SPS=SIN(ROX) MO 18 19 CPS=COS(ROX) MO 19 20 STH=SIN(ROY) MO 20 21 CTH=COS(ROY) MO 21 22 SPH=SIN(ROZ) MO 22 23 CPH=COS(ROZ) мо 23 24 XX=CPH+CTH MO 24 25 XY=CPH*STH*SPS-SPH*CPS MO 25 26 XZ=CPH*STH*CPS+SPH*SPS MO 26 27 YX=SPH*CTH MO 27 28 YY=SPH*STH*SPS+CPH*CPS MO 28 29 YZ=SPH*STH*CPS-CPH*SPS MO 29 30 ZX=~STH 30 MO 31 ZY=CTH*SPS MO 31 32 ZZ=CTH+CPS MO 32 33 NRP=NRPT MO 33 34 IF (NRPT.EQ.O) NRP=1 MO 34 35 IF (N.LT.N2) GO TO 3 MO 35 36 I1=ISEGNO(ITS,1) MO 36 37 IF (I1.LT.N2) I1=N2 MO 37 38 IX=I1 MO 38 39 K=N MO 39 IF (NRPT.EQ.0) K=I1-1 мо 40 40 41 DO 2 IR=1.NRP мо 41 DO 1 I=I1.N MO 47 42 MO 43 K=K+1 43 44 XI=X(I)MO 44 45 YI=Y(I)мо 45 46 MO ZI=Z(I)46 $X(K) = XI \cdot XX + YI \cdot XY + ZI \cdot XZ + XS$ 47 MO 47 $Y(K) = XI \cdot YX + YI \cdot YY + ZI \cdot YZ + YS$ 48 MO 48 49 Z(K) = XI * ZX + YI * ZY + ZI * ZZ + ZSMO 49 50 XI = X2(I)мо 50 51 YI=Y2(I)MO 51 52 ZI=Z2(I)MO 52 53 $X2(K) = XI \cdot XX + YI \cdot XY + ZI \cdot XZ + XS$ MO 53 54 $Y2(K) = XI^{*}YX + YI^{*}YY + ZI^{*}YZ + YS$ MO 54 55 Z2(K) = XI * ZX + YI * ZY + ZI * ZZ + ZSмО 55 56 BI(K)=BI(I)MO 56 57 ITAG(K)=ITAG(I)+ITGI мо 57 58 1 CONTINUE MÖ 58 59 Ii = N+1MO 59 60 N=K MO 60 мо CONTINUE 61 2 61 62 3 IF (M.LT.M2) GO TO 6 MO 62 63 I1=M2 MO 63 64 К=М мо 64

65	LDI=LD+1	мо	65
66	IF (NRPT.EQ.O) K≔M1	NO	66
67	DO 5 II=1.NRP	мо	67
68	DO 4 I=I1,M	MO	68
69	K=K+1	мо	69
70	IR=LDI-I	MO	70
71	KR=LDI-K	MO	71
72	XI=X(IR)	MO	72
73	YI=Y(IR)	мо	73
74	ZI=Z(IR)	мо	74
75	X(KR)=XI*XX+YI*XY+ZI*XZ+XS	мо	75
76	Y(KR)=XI+YX+YI+YY+ZI+YZ+YS	мо	76
77	Z(KR)=XI•ZX+YI•ZY+ZI•ZZ+ZS	MO	77
78	XI=T1X(IR)	мо	78
7 9	YI=TIY(IR)	MO	79
80	ZI=T1Z(IR)	мо	80
81	T1X(KR)=XI*XX+YI*XY+ZI*XZ	MO	81
82	T1Y(KR)=XI*YX+YI*YY+ZI*YZ	MO	82
83	T1Z(KR)=XI•ZX+YI•ZY+ZI•ZZ	MO	83
84	XI=T2X(IR)	MO	84
85	YI=T2Y(IR)	мо	85
86	ZI=T2Z(IR)	MO	86
87	T2X(KR)=XI*XX+YI*XY+ZI*XZ	мо	87
88	T2Y(KR)=XI*YX+YI*YY+ZI*YZ	MO	88
89	T2Z(KR)=XI*ZX+YI*ZY+ZI*ZZ	MO	89
90	SALP(KR)=SALP(IR)	MO	90
914	BI(KR)=BI(IR)	мо	91
92	I1=M+1	MO	92
93 5	M=K	MO	93
94 6	IF ((NRPT.EQ.0).AND.(IX.EQ.1)) RETURN	MO	94
95	NP=N	MO	95
96	MP=M	мо	96
97	IPSYM=0	MO	
98	RETURN	MO	
99	END	MO	

NEFLD

PURPOSE

To compute the near electric field due to currents induced on a structure.

- NE30 NE93 Near E field due to currents on segments is computed.
 NE30 NE41 Each segment is checked to determine whether the field observation point (XOB, YOB, ZOB) falls within the segment volume. If it does, AX is set to the radius of that segment. AX is then sent to routine EFLD as the radius of the observation segment. If (XOB, YOB, ZOB) is on the axis of a segment at its center, the field calculation with AX set to the segment radius is the same as that used in filling the matrix.
- NE42 NE93 Loop computing the field contribution of each segment.
- NE43 NE50 Parameters of source segment are stored in COMMON/DATAJ/.
- NE51 NE85 When the extended thin wire approximation is used, IND1 is set to 0 if end 1 of segment I is connected to a single parallel segment of the same radius, 1 if it is a free end, and 2 if it connects to a multiple junction, a bend, or a segment of different radius. IND2 is the same for end 2. If IND1 or IND2 is 2, the extended thin wire approximation will not be used for that end.
- NE87 EFLD stores the electric fields due to constant, sin ks, and cos ks currents in COMMON/DATAJ/.
- NE88 NE93 The field components are multiplied by the coefficients of the constant, sin ks, and cos ks components of the total segment current, and the field is summed.

NE95 - NE117 Near field due to patch currents is computed.

SYMBOL DICTIONARY

- ACX = constant component of segment current at NE88; \hat{t}_1 component of patch current at NE110
- AX = segment radius when the field evaluation point falls within a segment volume
- B = source segment radius

NEFLD

```
BCX = sin ks component of segment current at NE89; \hat{t}_{2} component of
        patch current at NE111
      = cos ks component of segment current at NE90
CCX
EX
      = x, y, and z components of total electric field
EΥ
EZ
EXC
      = E field due to a cos ks current on a segment
EYC
EZC
EXK )
      = E field due to a constant current at NE87; E field due to the t_1
EYK
         component of patch current at NE114
EZK
EXS
      = E field due to a sin ks current at NE87; E field due to the \hat{t}_2
EYX
         component of patch current at NE114
EZS
       = loop index for direct and reflected field (1, 2, respectively)
IP
T1X
      = arrays for \hat{t}_1
T1Y
T1Z
T1XJ
T1YJ = \hat{t}_1 for source patch
T1ZJ
T2X
      = arrays for \hat{t}_2
T2Y
T2Z
T2XJ
T2YJ = \hat{t}_2 for source path
T2ZJ
       = cosine of the angle between segment I and the segment connected
XI
         to its end
XOB
       = field evaluation point
YOB
ZOB
       = coordinates of the field evaluation point, z or \rho^2, in a
 ZP
         cylindrical coordinate system centered on the source segment
```

CONSTANTS

- 0.5001 = fraction of segment length used to test whether the field evaluation point falls within a segment
- 0.9 = fraction of segment radius used to test whether the field evaluation point falls within a segment
- 0.999999 = minimum XI for extended thin wire kernel (maximum angle = 0.08 degree)

1		SUBROUTINE NEFLD (XOB, YOB, ZOB, EX, EY, EZ)	NE	•
2	с		NE	1 2
3	С	NEFLD COMPUTES THE NEAR FIELD AT SPECIFIED POINTS IN SPACE AFTER	NE	3
4		THE STRUCTURE CURRENTS HAVE BEEN COMPUTED.	NE	4
5	С		NE	5
6		COMPLEX EX, EY, EZ, CUR, ACX, BCX, CCX, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, E	NE	6
7		1ZC, ZRATI, ZRATI2, T1, FRATI	NE	7
8		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	NE	8
9 10		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(2300), WLAM, IPSYM		9
11		COMMON /ANGL/ SALP(300)	NE	10
12		COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300)	NE	11 12
13		1),CUR(900)	NE	13
14		COMMON /DATAJ/ S, B, XJ, YJ, ZJ, CABJ, SABJ, SALPJ, EXK, EYK, EZK, EXS, EYS, EZ		14
15		1S,EXC,EYC,EZC,RKH,IEXK,IND1,IND2,IPGND	NE	15
16		COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR.	NE	16
17		1IPERF, T1, T2	NE	17
18		DIMENSION CAB(1), SAB(1), T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1),	NE	18
19		1722(1)	NE	19
20 21		EQUIVALENCE (CAB, ALP), (SAB, BET)	NE	20
22		EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON 12), (T2Z,ITAG)		21 22
23		EQUIVALENCE (TIXJ,CABJ), (TIYJ,SABJ), (TIZJ,SALPJ), (T2XJ,B), (T2Y	NE	23
24		1J,IND1), (T2ZJ,IND2)	NE	24
25		EX = (0., 0.)	NE	25
26		EY=(0.,0.)	NE	26
27		EZ=(0.,0.)	NE	27
28		AX=0.	NE	28
29		IF (N.EQ.0) GO TO 20	NE	29
30 31		DO 1 $I=1,N$	NE	30
32		XJ=X0B-X(I) YJ=Y0B-Y(I)	NE	31
33		$Z_{J}=ZOB-Z(I)$	NE NE	32 33
34		ZP=CAB(I)*XJ+SAB(I)*YJ+SALP(I)*ZJ	NE	33 34
35		IF (ABS(ZP).GT.0.5001*SI(I)) GO TO 1	NE	35
36		ZP=XJ*XJ+YJ*YJ+ZJ*ZJ-ZP*ZP	NE	36
37		XJ=BI(I)	NE	37
38		IF (ZP.GT.0.9*XJ*XJ) GO TO 1	NE	38
39		AX=XJ	NE	39
40		GO TO 2	NE	40
41	-		NE	41
42 43	2	DO 19 I=1,N S=SI(I)	NE	42
44		B=8I(I)	NE NE	43 44
45		XJ=X(I)	NE	45
46		YJY=Y(I)	NE	46
47		ZJ=Z(I)	NE	47
48		CABJ=CAB(I)	NE	48
49		SABJ=SAB(I)	NE	49
50		SALPJ=SALP(I)	NE	50
51 52		IF (IEXK.EQ.0) GO TO 18 IPR=ICON1(I)	NE	51
53		IF (IPR) 3,8,4	NE	52
54	3	IPR=-IPR	NE NE	53 54
55	-	IF (-ICON1(IPR).NE.I) GO TO 9	NE	55
56		GO TO 6	NE	56
57	4	IF (IPR.NE.I) GO TO 5	NE	57
58		IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 9	NE	58
59	-		NE	59
60		IF (ICON2(IPR).NE.I) GO TO 9	NE	60
61 62	0	XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR)) IF (XI.LT.0.999999) GO TO 9	NE	61
63		IF (XI.ET.0.999999) GO TO 9 IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 9	NE NE	62 63
64	7	IND1=0	NE	64
				2.

65	•	GO TO 10	NE	65
66	8	IND1=1	NE	66
67		GO TO 10	NE	67
68		IND1=2	NE	68
	10	IPR=ICON2(I)	NE	69
70		IF (IPR) 11,16,12	NE	70
71	11	IPR=-IPR	NE	71
72		IF (-ICON2(IPR).NE.I) GO TO 17	NE	72
73		GO TO 14	NE	73
74	12	IF (IPR.NE.I) GO TO 13	NE	74
75		IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 17	NE	75
76		GO TO 15	NE	76
77	13	IF (ICON1(IPR).NE.I) GO TO 17	NE	77
78	14	XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))	NE	78
79		IF (XI.LT.0.999999) GO TO 17	NE	79
80		IF (ABS(0I(IPR)/B-1.).GT.1.E-6) GO TO 17	NE	80
81	15	IND2=0	NE	81
82		GO TO 18	NE	82
83	16	IND2=1	NE	83
84		GO TO 18	NE	84
85	17	IND2=2	NE	85
	18	CONTINUE	NE	86
87		CALL EFLD (XOB, YOB, ZOB, AX, 1)	NE	87
88		ACX=CMPLX(AIR(I),AII(I))	NE	88
89		BCX=CMPLX(BIR(I),BII(I))	NE	89
90		CCX=CMPLX(CIR(I),CII(I))	NE	90
91		EX=EX+EXK*ACX+EXS*BCX+EXC*CCX	NE	91
92		EY=EY+EYK*ACX+EYS*BCX+EYC*CCX	NE	92
	19	EZ=EZ+EZK*ACX+EZS*BCX+EZC*CCX	NE	93
94	. •	IF (M.EQ.0) RETURN	NE	94
	20	JC=N	NE	95
96		JL=LD+1	NE	96
97		DO 21 I=1,M	NE	97
98		JL=JL-1	NE	98
99		S=BI(JL)	NE	99
100		XJ=X(JL)		100
101		YJ=Y(JL)		101
102		ZJ=Z(JL)		102
103		T1XJ=T1X(JL)		103
104		T1YJ=T1Y(JL)		104
105		T1ZJ=T1Z(JL)		105
106		T2XJ=T2X(JL)		105
107		T2YJ=T2Y(JL)		107
108		T2ZJ=T2Z(JL)		107
109		JC=JC+3		
		ACX=T1XJ*CUR(JC-2)+T1YJ*CUR(JC-1)+T1ZJ*CUR(JC)		109
110		BCX=T2XJ+CUR(JC-2)+T2YJ+CUR(JC-1)+T2ZJ+CUR(JC)		110
112		DO 21 IP=1.KSYMP		111 112
113		IPGND=IP		112
114		CALL UNERE (XOB,YOB,ZOB)		113
115		EX=EX+ACX•EXK+BCX•EXS		115
116		EY=EY+ACX•EYK+BCX•EYS		116
117		EZ=EZ+ACX*EZK+BCX*EZS		117
118		RETURN		118
119		END		119~
, , , ,			INE,	113

NETWK

PURPOSE

To solve for the voltages and currents at the ports of non-radiating networks that are part of the antenna. This routine also is involved in the solution for current when there are no non-radiating networks, and computes the relative driving point matrix asymmetry when this option is requested.

METHOD

Driving Point Matrix Asymmetry (NT32 to NT84):

To satisfy physical reciprocity, the elements of the inverse of the interaction matrix should satisfy the condition

$$G_{ij}^{-1}/\Delta_{j} = C_{ji}^{-1}/\Delta_{i}$$
 i, j = 1, ..., n,

where Δ_1 = length of segment i. This condition is not satisfied exactly, except on special structures, since the terms computed are not true reactions. The relative asymmetry of a matrix element is defined as

 $A = \left| \frac{\left(G_{ij}^{-1} / \Delta_j - G_{ji}^{-1} / \Delta_i \right)}{(G_{ij}^{-1} / \Delta_j)} \right| .$

The code from NT32 to NT84 computes the relative asymmetries of matrix elements for i and j of all driving point segments: either voltage source driving points or network connection points. The maximum relative asymmetry is located, and the rms relative asymmetry of all elements used is computed.

LOCAL CODING STRUCTURE

- NT32 NT44 Determine numbers of segments that are network connection points.
- NT46 NT54 Determine numbers of segments that are voltage source driving points. Indices of segments with network connections or voltage sources are stored in array IPNT with no duplication of numbers.

NT59 - NT69 Compute G_{kl}^{-1}/Δ_{l} for k,l = all segment numbers in IPNT. NT70 - NT84 Compute relative asymmetries of elements computed above, search for maximum and compute rms asymmetry.

-244-

LOCAL SYMBOL DICTIONARY

ASA =	sum of squares of relative asymmetries and rms value
ASM =	Δ_{ISC1} before NT70; maximum relative asymmetry after NT69
CMN(J,1) =	G_{k}^{-1}/Δ_{ℓ} ; k = IPNT(J), ℓ = IPNT(I)
CUR =	temporary storage of G_{lk}^{-1}/Δ_k
IPNT =	array of driving point segment indices
IROW1 =	number of entries in IPNT
ISC1 =	temporary storage of segment index
MASYM =	flag; if non-zero, matrix asymmetry is computed
NTEQ =	row index of element having maximum asymmetry
NTSC =	column index of element having maximum asymmetry
	relative matrix asymmetry
RHS =	vector for matrix solution used in obtaining G_{kl}^{-1}

Non-radiating Network Solution (NT89 to NT262):

The solution method when non-radiating networks are present is discussed in Part I.

Data for non-radiating networks is passed through the COMMON/NETCX/ where

- ISEG1(I) = number of the segment to which end 1 of Ith two-port network
 is connected

NONET = number of two-port networks for which data is given

Network parameters are contained in the arrays X11R, X11I, X12R, X12I, X22R, and X22I, and the type of network is determined by NTYP:

If NTYP is 1 -- the network parameters are the short-circuit admittance parameters of the network:

X11R, X11I = real and imaginary parts of Y_{11} X12R, X12I = real and imaginary parts of $Y_{12} = Y_{21}$ X22R, X22I = real and imaginary parts of Y_{22}

If NTYP is 2 or 3 -- the network is a transmission line: X11R = characteristic impedance of transmission line X11I = length of transmission line in meters X12R = real part of shunt admittance on end 1 of line X12I = imaginary part of shunt admittance on end 1 of line
X22R = real part of shunt admittance on end 2 of line
X22I = imaginary part of shunt admittance on end 2 of line

If NTYP is 2 -- the transmission line runs straight between the segments with respect to the segment reference directions.

If NTYP is 3 -- the transmission line is twisted as shown in figure 8.

The short circuit admittance parameters of the transmission line, Y_{11} , Y_{12} , and Y_{22} , are computed from NT110 to NT120 in the code. When NTYP is 3, the sign of Y_{12} is reversed.

The code from NT99 to NT194 forms a loop that for each network: computes the network parameters Y_{11} , Y_{12} and Y_{22} ; sorts the segment indices involved; and adds the parameters Y_{11} , Y_{12} , and Y_{22} to the appropriate network equations. The sorting procedure for the connection of end 1 of the network is described in figure 9. Decision 1 is made in the code from NT121 to NT126, decision 2 from NT128 to NT133, and decision 3 from NT138 to NT143. Segments having network connections only are assigned equation rows in the array CMN starting from the top in the order that the segments are encountered. Segments with both network and voltage source connections are assigned equation rows in CMN starting at the bottom and proceeding up. The former are eventually solved for the unknown gap voltages, while the latter are used to obtain source input admittances after the structure currents have been computed. The code from NT148 to NT174 assigns equation numbers for the connection of end 2 of the networks and sets IROW2 and ISC2.

The network short circuit parameters are added to the network equations from NT182 to NT193. The coefficient matrix is transposed in filling the CMN array, since the matrix solution routines operate on a transposed system. Hence, the first index should be considered the column number and the second index the row number. If a segment NSEG1 does not have a voltage source connected, the parameters Y_{11} and Y_{12} are added to column IROW1 at rows IROW1 and IROW2, respectively. IROW2 may be either (1) in the upper rows as part of the equations for the unknown gap voltages, or (2) if a voltage source is connected to segment NSEG2, in the lower rows for later determination of the source current. If a voltage source is connected to segment NSEG1, the

-246-

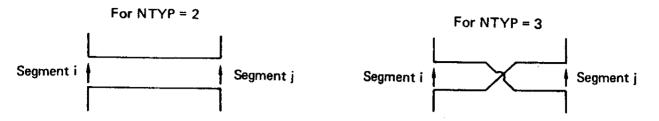
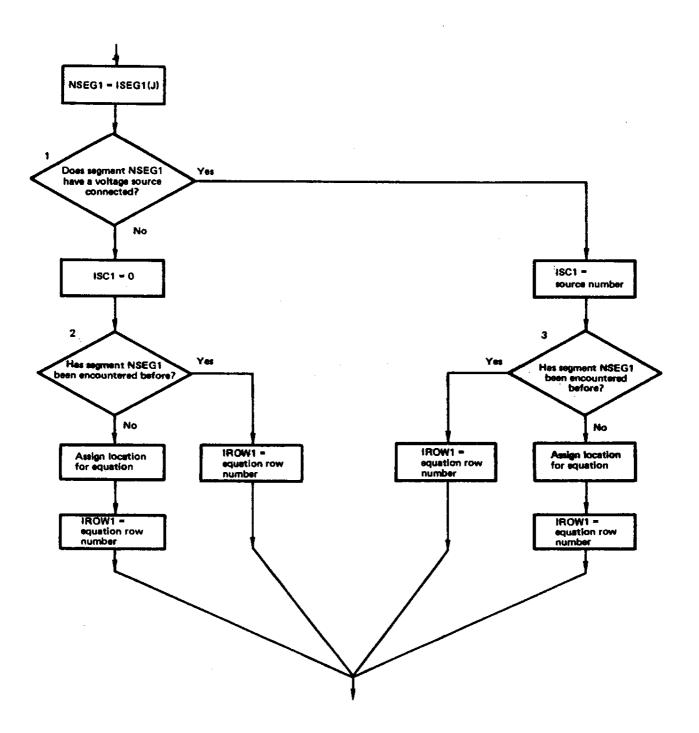
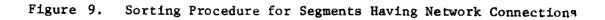


Figure 8. Options for Transmission Line Connection.

coefficients Y_{11} and Y_{12} are multiplied by the known source voltage and added to the right-hand side of the network equation in the rows IROW1 and IROW2. The parameters Y_{12} and Y_{22} are added to the equations in a similar manner.

The loop from NT199 to NT208 computes the elements of the inverse matrix G_{mn}^{-1} and adds them to the network equations. The network matrix is then factored at NT213. The code from NT218 to NT225 computes $B_1 = RHS(I)$, where


$$B_{i} = \sum_{j=1}^{N} G_{ij}^{-1} E_{j}^{i} \quad i = 1, \dots N,$$


with $(-E_j)$ being the known applied field on segment j, not including unknown voltage drops at network ports. Those elements B_j for segments in the network equations are then added to the right-hand side of the network equations. At NT229 the network equations are solved for the excitation fields due to voltage drops at the network ports. The negatives of these fields are added to the excitation vector at NT234 to NT236, completing the definition of the excitation vector E_j . The structure equations are then solved for the induced currents.

$$I_{j} = \sum_{j=1}^{N} G_{ij}^{-1} E_{j}$$
.

From NT241 to NT261, the voltage, current, admittance, and power seen looking into the structure at each network port are printed. This current does not include current through any voltage sources that are connected to the port.

-247-

The code from NT269 to NT294 computes and prints the voltage, current, admittance, and power seen by each voltage source looking into the structure and parallel connected network port, if a network is present.

After the network equations have once been set up, they can be solved for various incident fields by entering the code at NT218. If the location of voltage sources is changed, however, the equations must be recomputed.

If a structure has no non-radiating networks, the currents are computed at NT266.

SYMBOL DICTIONARY

ASA	sum of squares of relative matrix asymmetries and rms value
ASM	= segment length and maximum relative matrix asymmetry
CABS	<pre>= external routine (magnitude of complex number)</pre>
CM	≖ array of matrix elements G
CMN	= array for network equation coefficients
CMPLX	<pre>= external routine (forms complex number)</pre>
CONJG	= external routine (conjugate)
COS	= external routine (cosine)
CUR	= current
EINC	<pre>= excitation vector</pre>
FACTR	<pre>= external routine (Gauss-Doolittle matrix factoring)</pre>
FLOAT	<pre>= external routine (integer to real conversion)</pre>
I	= DO loop index
IP	array of positioning data from factoring of CM
IPNT	= array of positioning data from factoring of CMN
IROW1	= matrix element index
IROW2	= matrix element index
ISANT	= array of segment numbers for voltage source connection
ISC1	segment location in array ISANT
.ISC2	segment location in array ISANT
ISEG1	= number of segment to which port 1 of network is connected
ISEG2	= number of segment to which port 2 is connected
IX	= array of positioning data from factoring of CM
J	= DO loop index
MASYM	= flag to request matrix asymmetry calculation
NCOL	= number of columns in CM
ND IMN	= array dimension of CMN

NETWK

NETWK

NIDTMND	
NDIMNP	= NDIMN + 1
NONET	<pre>mumber of networks N (up)</pre>
NOP	= N/NP
NPRINT	= flag to control printing
NROW	= number of rows in CM
NSANT	<pre>= number of voltage sources</pre>
NSEG1	= array of segments to which port 1 of a network connects
NSEG2	= array of segments to which port 2 of a network connects
NTEQA(I)	= segment number associated with I th network equation
NTSC	= number of network-voltage source equations
NTSCA(1)	= segment number associated with I th network-voltage source
	equation
NTSOL	= flag to indicate network equations do not need to be
	recomputed
NTYP(I)	= type of I th network
PIN	= total input power from sources
PNLS	= power lost in networks
PWR	= power
REAL	= external routine (real part of complex number)
RHNT	= vector for right-hand side of network equations
RHNX	= component of RHNT due to Y_{11} , Y_{12} , Y_{22} terms
RHS	= vector for right-hand side of structure interaction equation
SIN	= external routine (sine)
SOLVE	<pre>= external routine (Gauss-Doolittle solution)</pre>
SOLVES	= external routine (Gauss-Doolittle solution of CM matrix)
SQRT	= external routine (square root)
TP	= 2π
VLT	= voltage
VSANT(I)	= voltage of source on segment NSANT(I)
VSRC(I)	= voltage of source on I th segment in network-voltage source
	equations
X111]	
X11R	
X12I	= network or transmission line specification
X12R	parameters
X22I	
X22R	

YMIT =	admittance
Y11I =	imaginary part of Y
Y11R =	real part of Y ₁₁
Y12I =	imaginary part of Y ₁₂
Y12R =	real part of Y ₁₂
¥22I =	imaginary part of Y ₂₂
Y22R =	real part of Y ₂₂
ZPED =	impedance

CONSTANTS

6.283185308	=	2π
30	=	row and column dimensions of CMN
31	=	(row and column dimensions of CMN) + 1

NETWK

1 2		NT	1
3		NT	2 3
4	C EVETTATION THE UDING THE FEFFOR OF NOW PROFESSION AND THE PE	NT NT	4
5		NT	5
6	C	NT	6
7	COMPLEX CMN, RHNT, YMIT, RHS, ZPED, EINC, VSANT, VLT, CUR, VSRC, RHNX, VQD, VQ	NT	7
8	1DS,CUX,CM,CMB,CMC,CMD	NT	8
9	COMMON /DATA/ LD.N1.N2.N.NP.M1.M2.M.MP.X(300),Y(300),Z(300),SI(300)	NT	9
10 11	2700) WEAR TROUB	NT	10
12	COMMON /CRNT/ AIR(300).AII(300).BIR(300).BII(300).CIR(300).CII(300)	NT	11
13	() ()()()()()()()()()()()()()()()()()()		12
14	COMMON /VSORC/ VQD(30),VSANT(30),VQDS(30),IVQD(30),ISANT(30),IQDS(13
15		NT	14 15
16	COMMON /NETCX/ ZPED, PIN, PNLS, NEQ, NPEQ, NEQ2, NONET, NTSOL, NPRINT, MASY	NT	16
17	1M, ISEG1(30), ISEG2(30), X11R(30), X11I(30), X12R(30), X12I(30), X22R(30) M	NT	17
18	D_{1} VOOT(TO) UTVD(TO)	NT	18
19		NT	19
20	DIMENSION CMN(30,30), RHNT(30), IPNT(30), NTEQA(30), NTSCA(30), RH #	NT	20
21		NT	21
22		NT	22
23 24		NT	23
24		NT	24
25			25
27		NT NT	26 27
28		NT	28
29		NT	29
30		NT	30
31	•	NT	31
32	IROW1=0	NT	32
33		NT	33
34		NT	34
35		NT	35
36		NT	36
37 38		NT	37
39		NT NT	38
40		NT	39 40
41	· · · · · · · · · · · · · · · · · · ·	NT	41
42		NT	42
43	3 NSEG1=ISEG2(I)	NT	43
44		NT	44
45		NT	45
46		NT	46
47		NT	47
48 49		NT	48
49 50		NT	49
51		NT NT	50 51
52		NT	52
53		NT	53
54		NT	54
55		NT	55
56		NT	56
57		NT	57
58		NT	58
59 60		NT	59
61			60 61
62		NT NT	61 62
63		NT	63
64		NT	64

NETWK

65	CALL SOLGF (CM, CMB, CMC, CMD, RHS, IP, NP, N1, N, MP, M1, M, NEQ, NEQ2)	NT 65
66	CALL CABC (RHS)	NT 66
67	DO 12 J=1, IROW1	NT 67
68	ISCI=IPNT(J)	NT 68
	• /	
69 12	CMN(J,I)=RHS(ISC1)/ASM	NT 69
70	ASM=0.	NT 70
71	ASA=0.	NT 71
72	DO 13 I=2, IROW1	NT 72
73	ISC1=I-1	NT 73
74	DO 13 J=1,ISC1	NT 74
75		
	CUX=CMN(I,J)	
76	PWR=CABS((CUX-CMN(J,I))/CUX)	NT 76
77	ASA=ASA+PWR+PWR	NT 77
78	IF (PWR.LT.ASM) GO TO 13	NT 78
79	ASM=PWR	NT 79
80	NTEQ=IPNT(I)	NT 80
81	NTSC=IPNT(J)	NT 81
		NT 82
82 13		
83	ASA=SQRT(ASA+2./FLOAT(IROW1+(IROW1-1)))	NT 83
84	PRINT 58, ASM,NTEQ,NTSC,ASA	NT 84
85 14	IF (NONET.EQ.0) GO TO 48	NT 85
86 C		NT 86
87 C	SOLUTION OF NETWORK EQUATIONS	NT 87
88 C		NT 88
89	DO 15 I=1,NDIMN	
90	RHNX(I)=(0.,0.)	NT 90
91	DO 15 J=1,NDIMN	NT 91
92 15	CMN(I,J)=(0.,0.)	NT 92
93	NTEQ=0	NT 93
94	NTSC=0	NT 94
	N150-0	NT 95
95 C		
96 C	SORT NETWORK AND SOURCE DATA AND ASSIGN EQUATION NUMBERS TO	NT 96
97 C	SEGMENTS.	NT 97
98 C		NT 98
99	DO 38 J=1,NONET	NT 99
100	NSEG1=ISEG1(J)	NT 100
101	NSEG2=ISEG2(J)	NT 101
102	IF (NTYP(J).GT.1) GO TO 16	NT 102
103	Y11R=X11R(J)	NT 103
104	Y11I=X11I(J)	NT 104
105	Y12R=X12R(J)	NT 105
106	Y12I=X12I(J)	NT 106
107	Y22R=X22R(J)	NT 107
108		NT 108
	Y22I=X22I(J)	NT 109
109	GO TO 17	
110 16	Y22R=TP*X11I(J)/WLAM	NT 110
111	Y12R=0.	NT 111
112	Y12I=1./(X11R(J)*SIN(Y22R))	NT 112
113		NT 113
113	Y11R=X12R(J)	
114	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R)	NT 114
114 115	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J)	NT 114 NT 115
114 115 116	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J)	NT 114 NT 115 NT 116
114 115 116 117	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J)	NT 114 NT 115 NT 116 NT 117
114 115 116 117 118	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17	NT 114 NT 115 NT 116 NT 117 NT 118
114 115 116 117	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J)	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119
114 115 116 117 118	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17	NT 114 NT 115 NT 116 NT 117 NT 118
114 115 116 117 118 119 120	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119
114 115 116 117 118 119 120 121 17	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121
114 115 116 117 118 119 120 121 17 122	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19 DO 18 I=1.NSANT	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121 NT 122
114 115 116 117 118 119 120 121 17 122 123	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19 DO 18 I=1.NSANT IF (NSEG1.NE.ISANT(I)) GO TO 18	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121 NT 122 NT 123
114 115 116 117 118 119 120 121 17 122 123 124	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19 DO 18 I=1.NSANT IF (NSEG1.NE.ISANT(I)) GO TO 18 ISC1=I	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121 NT 122 NT 123 NT 124
114 115 116 117 118 119 120 121 17 122 123 124 125	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19 DO 18 I=1.NSANT IF (NSEG1.NE.ISANT(I)) GO TO 18 ISC1=I GO TO 22	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121 NT 122 NT 123 NT 124 NT 125
114 115 116 117 118 119 120 121 17 122 123 124	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19 DO 18 I=1.NSANT IF (NSEG1.NE.ISANT(I)) GO TO 18 ISC1=I GO TO 22 CONTINUE	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121 NT 122 NT 123 NT 124 NT 125 NT 126
114 115 116 117 118 119 120 121 17 122 123 124 125	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19 DO 18 I=1.NSANT IF (NSEG1.NE.ISANT(I)) GO TO 18 ISC1=I GO TO 22 CONTINUE ISC1=0	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121 NT 122 NT 123 NT 124 NT 125 NT 126 NT 127
114 115 116 117 118 119 120 121 17 122 123 124 125 126 18	Y11R=X12R(J) Y11I=-Y12I*COS(Y22R) Y22R=X22R(J) Y22I=Y11I+X22I(J) Y11I=Y11I+X12I(J) IF (NTYP(J).EQ.2) GO TO 17 Y12R=-Y12R Y12I=-Y12I IF (NSANT.EQ.0) GO TO 19 DO 18 I=1.NSANT IF (NSEG1.NE.ISANT(I)) GO TO 18 ISC1=I GO TO 22 CONTINUE	NT 114 NT 115 NT 116 NT 117 NT 118 NT 119 NT 120 NT 121 NT 122 NT 123 NT 124 NT 125 NT 126

129	DO 20 I=1,NTEQ	NT 129
130	IF (NSEGI.NE.NTEQA(I)) GO TO 20	NT 130
131	IROW1=I	NT 131
132	GO TO 25	
133 20	CONTINUE	NT 132
134 21	NTEQ=NTEQ+1	NT 133
		NT 134
135	IROW1=NTEQ	NT 135
136	NTEQA(NTEQ)=NSEG1	NT 136
137	GO TO 25	NT 137
138 22	IF (NTSC.EQ.0) GO TO 24	NT 138
139	DO 23 I=1,NTSC	NT 139
140	IF (NSEG1.NE.NTSCA(I)) GO TO 23	
141	IROW1=NDIMNP-I	NT 140
		NT 141
142	GO TO 25	NT 142
143 23	CONTINUE	NT 143
144 24	NTSC=NTSC+1	NT 144
145	IROW1=NDIMNP-NTSC	NT 145
146	NTSCA(NTSC)=NSEG1	NT 146
147	VSRC(NTSC)=VSANT(ISC1)	NT 147
148 25	IF (NSANT.EQ.0) GO TO 27	
149	DO 26 I=1,NSANT	NT 148
		NT 149
150	IF (NSEG2.NE.ISANT(I)) GO TO 26	NT 150
151	ISC2=I	NT 151
152	GO TO 30	NT 152
153 26	CONTINUE	NT 153
154 27	ISC2=0	NT 154
155	IF (NTEQ.EQ.0) GO TO 29	NT 155
156	DO 28 $I=1,NTEQ$	
157		NT 156
	IF (NSEG2.NE.NTEQA(I)) GO TO 28	NT 157
158	IROW2=I	NT 158
159	GO TO 33	NT 159
160 28	CONTINUE	NT 160
161 29	NTEQ=NTEQ+1	NT 161
162	IROW2=NTEQ	NT 162
163	NTEQA(NTEQ)=NSEG2	NT 163
164	GO TO 33	NT 164
165 30	IF (NTSC.EQ.0) GO TO 32	NT 165
166		
	DO 31 I=1,NTSC	NT 166
167	IF (NSEG2.NE.NTSCA(I)) GO TO 31	NT 167
168	IROW2=NDIMNP-I	NT 168
169	GO TO 33	NT 169
170 31	CONTINUE	NT 170
171 32	NTSC=NTSC+1	NT 171
172	IROW2=NDIMNP-NTSC	NT 172
173	NTSCA(NTSC)=NSEG2	NT 173
174	VSRC(NTSC)=VSANT(ISC2)	NT 174
175 33	IF (NTSC+NTEQ.LT.NDIMNP) GO TO 34	NT 175
176	PRINT 59	NT 176
177	STOP	NT 177
178 C		NT 178
17 9 C	FILL NETWORK EQUATION MATRIX AND RIGHT HAND SIDE VECTOR WITH	NT 179
180 C	NETWORK SHORT-CIRCUIT ADMITTANCE MATRIX COEFFICIENTS.	NT 180
181 C		NT 181
182 34	IF (ISC1.NE.0) GO TO 35	NT 182
183	CMN(IROW1,IROW1)=CMN(IROW1,IROW1)-CMPLX(Y11R,Y11I)•SI(NSEG1)	NT 183
184	CUN(TDOW1 TDOW2)-CUN(TDOW1 TDOW2) CUDIX(VIDD VIDT)ACT/VCCC)	
	CMN(IROW1.IROW2)=CMN(IROW1.IROW2)-CMPLX(Y12R,Y12I)*SI(NSEG1)	NT 184
185	GO TO 36	NT 185
186 35	RHNX(IROW1)=RHNX(IROW1)+CMPLX(Y11R,Y11I)*VSANT(ISC1)/WLAM	NT 186
187	RHNX(IROW2)=RHNX(IROW2)+CMPLX(Y12R,Y12I)*VSANT(ISC1)/WLAM	NT 187
188 36	IF (ISC2.NE.0) GO TO 37 🔹	NT 188
189	CMN(IROW2, IROW2)=CMN(IROW2, IROW2)-CMPLX(Y22R, Y22I)*SI(NSEG2)	NT 189
190	CMN(IROW2, IROW1)=CMN(IROW2, IROW1)-CMPLX(Y12R, Y12I)*SI(NSEG2)	NT 190
191	GO TO 38	NT 191
192 37	RHNX(IROW1)=RHNX(IROW1)+CMPLX(Y12R,Y12I)•VSANT(ISC2)/WLAM	NT 192

1ETWK

•

193	RHNX (TROW2) - PHNX (TROW2) + CHOL X (MODO MEDICAL STATE STATE	
194 38	RHNX(IROW2)=RHNX(IROW2)+CMPLX(Y22R,Y22I)*VSANT(ISC2)/WLAM CONTINUE	NT 193
195 C		NT 194
196 C	ADD INTERACTION MATRIX ADMITTANCE ELEMENTS TO NETWORK EQUATION	NT 195
197 C	MATRIX	NT 196 NT 197
198 C		NT 197
199	DO 41 I=1,NTEQ	NT 198
200	DO 39 J=1,NEQT	NT 200
201 39	RHS(J)=(0.,0.)	NT 201
202	IROW1=NTEQA(I)	NT 202
203 204	RHS(IROW1)=(10.)	NT 203
204	CALL SOLGE (CM.CMB.CMC.CMD.RHS.IP.NP.N1.N.MP.M1.M.NEQ.NEQ2)	NT 204
205	CALL CABC (RHS) DO 40 J=1,NTEQ	NT 205
207	IROWI=NTEQA(J)	NT 206
208 40	CMN(I,J)=CMN(I,J)+RHS(IROW1)	NT 207
209 41	CONTINUE	NT 208
210 C		NT 209
211 C	FACTOR NETWORK EQUATION MATRIX	NT 210
212 C	A CONTRACTOR MATRIX	NT 211
213	CALL FACTR (NTEQ,CMN,IPNT,NDIMN)	NT 212
214 C		NT 213
215 C	ADD TO NETWORK EQUATION RIGHT HAND SIDE THE TERMS DUE TO ELEMENT	NT 214
216 C	INTERACTIONS	NT 215 NT 216
217 C		NT 217
218 42	IF (NONET.EQ.0) GO TO 48	NT 218
219	DO 43 I=1.NEQT	NT 219
220 43	RHS(I)=EINC(I)	NT 220
221	CALL SOLGF (CM, CMB, CMC, CMD, RHS, IP, NP, NI, N, MP, MI, M, NEQ, NEQ2)	NT 221
222	CALL CABC (RHS)	NT 222
223 224	DO 44 I=1,NTEQ	NT 223
225 44		NT 224
225 44 226 C	RHNT(I)=RHNX(I)+RHS(IROW1)	NT 225
227 C	SOLVE NETWORK EQUATIONS	NT 226
228 C	SOCIE HEIMORK EQUATIONS	NT 227
229	CALL SOLVE (NTEQ.CMN, IPNT, RHNT, NDIMN)	NT 228
230 C	(in the found, the found, the found for the found)	NT 229
231 C	ADD FIELDS DUE TO NETWORK VOLTAGES TO ELECTRIC FIELDS APPLIED TO	NT 230
232 C	STRUCTURE AND SOLVE FOR INDUCED CURRENT	NT 231
233 C		NT 232 NT 233
234	DO 45 I=1,NTEQ	NT 234
235	IROW1=NTEQA(I)	NT 235
236 45	EINC(IROW1)=EINC(IROW1)-RHNT(I)	NT 236
237	CALL SOLGF (CM.CMB.CMC,CMD,EINC, IP,NP,N1,N,MP,M1,M,NEQ,NEQ2)	NT 237
238	CALL CABC (EINC)	NT 238
239	IF (NPRINT.EQ.O) PRINT 61	NT 239
240 241	IF (NPRINT.EQ.0) PRINT 60	NT 240
242	DO 46 I=1,NTEQ IROW1=NTEQA(I)	NT 241
243	VLT=RHNT(I)+SI(IROW1)+WLAM	NT 242
244	CUX=EINC(IROW1)*WLAM	NT 243
245	YMIT=CUX/VLT	NT 244
246	ZPED=VLT/CUX	NT 245
247	IROW2=ITAG(IROW1)	NT 246
248	PWR=.5*REAL(VLT*CONJG(CUX))	NT 247 NT 248
249	PNLS=PNLS-PWR	NT 248
250 46	IF (NPRINT.EQ.O) PRINT 62, IROW2, IROW1, VLT, CUX, ZPED, YMIT, PWR	NT 250
251	IF (NTSC.EQ.0) GO TO 49	NT 251
252	DO 47 I=1,NTSC	NT 252
253	IROW1=NTSCA(I)	NT 253
254 255	VLT=VSRC(I)	NT 254
255	CUX=EINC(IROW1)+WLAM YMIT=CUX/VLT	NT 255
~ ~ ~		NT 256

057				
257		ZPED=VLT/CUX	NT	257
258		IROW2=ITAG(IROW1)		258
259		PWR=.5*REAL(VLT*CONJG(CUX))		259
260		PNLS=PNLS-PWR	, NT	260
261	4/	IF (NPRINT.EQ.0) PRINT 62, IROW2, IROW1, VLT, CUX, ZPED, YMIT, PWR	NT	261
262	~	GO TO 49	NT	262
263			NT	263
264		SOLVE FOR CURRENTS WHEN NO NETWORKS ARE PRESENT	NŤ	264
265			ΝT	265
266	48	CALL SOLGF (CM, CMB, CMC, CMD, EINC, IP, NP, N1, N, MP, M1, M, NEQ, NEQ2)	NT	266
267		CALL CABC (EINC)	NT	267
268		NTSC=0	NT	268
269	49	IF (NSANT+NVQD.EQ.O) RETURN	NT	269
270		PRINT 63	NT	270
271		PRINT 60	NT	271
272		IF (NSANT.EQ.0) GO TO 56	NT	272
273		DO 55 I=1,NSANT	NT	273
274		ISC1=ISANT(I)	NT	274
275		VLT=VSANT(I)	NT	275
276		IF (NTSC.EQ.0) GO TO 51	ΝT	276
277		DO 50 J=1,NTSC	NT	277
278		IF (NTSCA(J).EQ.ISC1) GO TO 52		278
279	50	CONTINUE	NT	279
280	51	CUX=EINC(ISC1)*WLAM		280
281		IROW1=0		281
282		GO TO 54		282
283	52	IROW1=NDIMNP-J		283
284		CUX=RHNX(IROW1)		284
285		DO 53 J=1,NTEQ		285
286	53	CUX=CUX-CMN(J,IROW1)*RHNT(J)		286
287		CUX=(EINC(ISC1)+CUX)*WLAM		287
288	54	YMIT=CUX/VLT		288
289		ZPED=VLT/CUX		289
290		PWR=.5*REAL(VLT*CONJG(CUX))		290
291		PIN=PIN+PWR		291
292		IF (IROW1.NE.0) PNLS=PNLS+PWR		292
293		IROW2=ITAG(ISC1)		293
294	55	PRINT 62, IROW2, ISC1, VLT, CUX, ZPED, YMIT, PWR		294
295	56	IF (NVQD.EQ.0) RETURN		295
296		DO 57 I=1,NVQD		296
297		ISC1=IVQD(I)		297
298		VLT=VQD(I)		298
299		CUX=CMPLX(AIR(ISC1),AII(ISC1))		299
300		YMIT=CMPLX(BIR(ISC1),BII(ISC1))		300
301		ZPED=CMPLX(CIR(ISC1),CII(ISC1))		301
302		PWR=SI(ISC1) • TP • .5		302
303		CUX=(CUX-YMIT*SIN(PWR)+ZPED*COS(PWR))*WLAM		303
304		YMIT=CUX/VLT		304
305		ZPED=VLT/CUX		305
306		PWR=.5*REAL(VLT*CONJG(CUX))		306
307		PIN=PIN+PWR		307
308		IROW2=ITAG(ISC1)		308
309	57	PRINT 64, IROW2, ISC1, VLT, CUX, ZPED, YMIT, PWR		309
310		RETURN		310
311	С		NT	311
312		FORMAT (///.3X.47HMAXIMUM RELATIVE ASYMMETRY OF THE DRIVING POINT,	ΝŤ	312
313	1	21H ADMITTANCE MATRIX IS, E10.3, 13H FOR SEGMENTS, IS, 4H AND, IS, /, 3X,	NT	313
314		225HRMS RELATIVE ASYMMETRY IS, E10.3)		314
315	59	FORMAT (1X,44HERROR NETWORK ARRAY DIMENSIONS TOO SMALL)	NT	315
316		FORMAT (/.3X.3HTAG.3X.4HSEG.,4X,15HVOLTAGE (VOLTS),9X.14HCURRENT (NT	316
317	1	IAMPS),9X,16HIMPEDANCE (OHMS),8X,17HADMITTANCE (MHOS).6X.5HPOWER./.	NT	317
318		23X,3HNO.,3X.3HNO.,4X,4HREAL,8X,5HIMAG.,3(7X,4HREAL,8X,5HIMAG.),5X.	NT	318
319		37H(WATTS))	NT	319
320	61	FORMAT (///,27X.66H STRUCTURE EXCITATION DATA AT NETWORK CONN	NT	320

NETWK

```
      321
      1ECTION POINTS - - -)
      NT 321

      322 62
      FORMAT (2(1X,I5),9E12.5)
      NT 322

      323 63
      FORMAT (///.42X,36H- - - ANTENNA INPUT PARAMETERS - -)
      NT 323

      324 64
      FORMAT (1X,I5,2H*,I4,9E12.5)
      NT 324

      325
      END
      NT 325-
```

NFPAT

PURPOSE

To compute and print the near E or H field over a range of points.

METHOD

The range of points in rectangular or spherical coordinates is obtained from parameters in COMMON/FPAT/. Subroutine NEFLD is called for near E field and NHFLD is called for near H field.

SYMBOL DICTIONARY

Срн	= cos φ
СТН	$=\cos \theta$
DXNR	= increment for x in rectangular coordinates or R in
	spherical coordinates
D YNR	= increment for y in rectangular coordinates or ϕ in
	spherical coordinates
DZNR	= increment for z in rectangular coordinates or θ in
	spherical coordinates
EX, EY, EZ	= x, y and z components of E or H
NEAR	= 0 for rectangular coordinates
	l for spherical coordinates
NFEH	= 0 for near E field
	l for near H field
NRX, NRY, NRZ	= number of values for x, y and z or R, ϕ , θ
NRX, NRY, NRZ SPH	= number of values for x, y and z or R, φ, θ = sin φ
SPH	= sin ¢
SPH STH	= sin φ = sin θ
SPH STH ТА	= $\sin \phi$ = $\sin \theta$ = $\pi/180$
SPH STH TA XNR	= $\sin \phi$ = $\sin \theta$ = $\pi/180$ = initial x or R
SPH STH TA XNR XNRT	= $\sin \phi$ = $\sin \theta$ = $\pi/180$ = $initial x \text{ or } R$ = $x \text{ or } R$
SPH STH TA XNR XNRT XOB	= $\sin \phi$ = $\sin \theta$ = $\pi/180$ = $initial x \text{ or } R$ = $x \text{ or } R$ = x
SPH STH TA XNR XNRT XOB YNR	<pre>= sin φ = sin θ = π/180 = initial x or R = x or R = x = initial y or φ</pre>
SPH STH TA XNR XNRT XOB YNR YNRT	<pre>= sin φ = sin θ = π/180 = initial x or R = x or R = x = initial y or φ = y or φ</pre>
SPH STH TA XNR XNRT XOB YNR YNRT YOB	<pre>= sin φ = sin θ = π/180 = initial x or R = x or R = x = initial y or φ = y or φ = y</pre>

NFPAT

1	с	SUBROUTINE NFPAT COMPUTE NEAR E OR H FIELDS OVER A RANGE OF POINTS	NP	1
3	Č	COMPLEX EX, EY, EZ	NP NP	2 3
4		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300		4
5		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(NP	5
6		2300), WLAM, IPSYM	NP	6
7		COMMON /FPAT/ NTH, NPH, IPD, IAVP, INOR, IAX, THETS, PHIS, DTH, DPH, RFLD, GN		7
8		10R, CLT, CHT, EPSR2, SIG2, IXTYP, XPR6, PINR, PNLR, PLOSS, NEAR, NFEH, NRX, NRY		8
9		2, NRZ, XNR, YNR, ZNR, DXNR, DYNR, DZNR	NP	9
10		DATA TA/1.745329252E-02/	NP	10
11		IF (NFEH.EQ.1) GO TO 1	NP	11
12		PRINT 10	NP	12
13		GO TO 2	NP	13
14	1	PRINT 12	NP	14
15	2	ZNRT=ZNR-DZNR	NP	15
16		DO 9 I=1,NRZ	NP	16
17		ZNRT=ZNRT+DZNR	NP	17
18		IF (NEAR.EQ.O) GO TO 3	NP	18
19		CTH=COS(TA+ZNRT)	NP	19
20	-	STH=SIN(TA*ZNRT)	NP	20
21	3		NP	21
22 23			NP NP	22 23
23		YNRT=YNRT+DYNR IF (NEAR.EQ.0) GO TO 4	NP	24
25		CPH=COS(TA*YNRT)	NP	25
26		SPH=SIN(TA*YNRT)	NP	26
27	4	XNRT=XNR-DXNR	NP	27
28		DO 9 KK=1,NRX	NP	28
29		XNRT=XNRT+DXNR	NP	29
30		IF (NEAR.EQ.0) GO TO 5	NP	30
31		XOB=XNRT+STH+CPH	NP	31
32		YOB=XNRT*STH*SPH	NP	32
33		ZOB=XNRT+CTH	NP	33
34		GO TO 6	NP	34
35	5	XOB=XNRT	NP	35
36		YOB=YNRT	NP	36
37		ZOB=ZNRT	NP	37
38			NP	38
39			NP	39
40		TMP3=ZOB/WLAM IF (NFEH.EQ.1) GO TO 7	NP	40
41 42		CALL NEFLD (TMP1,TMP2,TMP3,EX,EY,EZ)	NP NP	41 42
43		GO TO 8	NP	43
	7	CALL NHFLD (TMP1,TMP2,TMP3,EX,EY,EZ)	NP	44
	8	TMP1=CABS(EX)	NP	45
46		TMP2=CANG(EX)	NP	46
47		TMP3=CABS(EY)	NP	47
48		TMP4=CANG(EY)	NP	48
49		TMP5=CABS(EZ)	NP	49
50		TMP6=CANG(EZ)	NP	50
51		PRINT 11, XOB, YOB, ZOB, TMP1, TMP2, TMP3, TMP4, TMP5, TMP6	NP	51
	9	CONTINUE	NP	52
53		RETURN	NP NP	53
	C 10	FORMAT (///.35X.32H NEAR ELECTRIC FIELDS//.12X.14H- L	NP	54 55
	10	10CATION -,21X.8H - EX -,15X.8H - EY -,15X.8H - EZ -,/.8X.1HX.1		56
57		20X, 1HY, 10X, 1HZ, 10X, 9HMAGNITUDE, 3X, 5HPHASE, 6X, 9HMAGNITUDE, 3X, 5HPHAS		57
58		3E, 6X, 9HMAGNITUDE, 3X, 5HPHASE, /, 6X, 6HMETERS, 5X, 6HMETERS, 5X, 6HMETERS,		58
59		48X,7HVOLTS/M,3X,7HDEGREES,6X,7HVOLTS/M,3X,7HDEGREES,6X,7HVOLTS/M,3		59
60		5X,7HDEGREES)	NP	60
61	11	FORMAT (2X,3(2X,F9.4),1X,3(3X,E11.4,2X,F7.2))	NP	61
	12		NP	62
63		10CATION -,21X,8H- HX -,15X,8H- HY -,15X,8H- HZ -,/,8X,1HX,1		63
64		20X.1HY.10X.1HZ.10X.9HMAGNITUDE.3X.5HPHASE.6X.9HMAGNITUDE.3X.5HPHAS	NΡ	64

VFPAT

65	3E,6X,9HMAGNITUDE,3X,5HPHASE,/,6X,6HMETERS,5X,6HMETERS,5X,6HMETERS,	NP	65
66	49X.6HAMPS/M.3X.7HDEGREES.7X.6HAMPS/M.3X.7HDEGREES.7X.6HAMPS/M.3X.7	NP	66
67	5HDEGREES)	NP	67
68	END	NP	68

NHFLD

PURPOSE

To compute the near magnetic field due to currents induced on a structure.

CODING

- NH28 NH56 Near H field due to currents on segments is computed.
- NH29 NH40 Each segment is checked to determine whether the field observation point (XOB, YOB, ZOB) falls within the segment volume. If it does, AX is set to the radius of that segment. AX is then sent to routine HSFLD as the radius of the observation segment to avoid a singularity in the field.
- NH41 NH56 Loop computing the field contribution of each segment.
- NH42 NH49 Parameters of source segment are stored in COMMON/DATAJ/.
- NH50 HSFLD stores the magnetic field due to constant, sin ks, and cos ks currents in COMMON/DATAJ/.
- NH54 NH56 The field components are multiplied by the coefficients of the constant, sin ks, and cos ks components of the total segment current, and the field is summed.
- NH58 NH78 Near H fields due to patch currents are computed.
- NH62 NH71 Parameters of source patch are set in COMMON/DATAJ/.
- NH72 H field is computed by HINTG.
- NH76 NH78 H fields due to \hat{t}_1 and \hat{t}_2 current components are multiplied by the current strengths and summed.

SYMBOL DICTIONARY

- ACX = constant component of the segment current at NH51; t₁ component of patch current at NH74 AX = segment radius when the field evaluation point falls within a segment volume
- BCX = sin ks component of segment current at NH52; \hat{t}_2 component of patch current at NH75
- CCX = cos ks component of segment current at NH.53
 HX]
- HY = total H field
- HZ

T1X ⇒ arrays for t₁ T1Y T1Z T1XJ = \hat{t}_1 for patch I TIYJ T1ZJ T2X = arrays for \hat{t}_2 T2Y T2Z T2XJ = \hat{t}_2 for patch I T2YJ T2ZJ XOB = field evaluation point YOB ZOB = coordinates of the field evaluation point, z or ρ^2 , in a ΖP cylindrical coordinate system centered on the source segment.

CONSTANTS

- 0.5001 = fraction of segment length used to test whether the field evaluation point falls within a segment
- 0.9 = fraction of segment radius used to test whether the field evaluation point falls within a segment

NHFLD

1			
2 C	SUBROUTINE NHFLD (XOB,YOB,ZOB,HX,HY,HZ)	NH	1
3 C	NHELD CONDUTES THE NEAR FIELD AT SPECIFICD DOTATO TH OPLOT ATTAC	NH	2
4 C	NHFLD COMPUTES THE NEAR FIELD AT SPECIFIED POINTS IN SPACE AFTER THE STRUCTURE CURRENTS HAVE BEEN COMPUTED.	NH	3
5 Č	THE STRUCTURE CORRENTS HAVE BEEN COMPUTED.	NH	4
6	COMPLEY HY HY HY CID ACY BOY COY FYR FYR FYR FYR FYR FYR FYR FYR FYR FY	NH	5
7	COMPLEX HX, HY, HZ, CUR, ACX, BCX, CCX, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, E 1ZC		6
8		NH	7
9	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300)	NH	8
ıŏ	1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(2300), WLAM, IPSYM		9
11	COMMON /ANGL/ SALP(300)	NH	10
12	COMMON /CRN1/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300	NH	11
13	1),CUR(900)		12
14	COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ	NH	13
15	1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND		14
16	DIMENSION CAB(1), SAB(1)	NH	15
17	DIMENSION $T1X(1)$, $T1Y(1)$, $T1Z(1)$, $T2X(1)$, $T2Y(1)$, $T2Z(1)$, $XS(1)$, Y	NH	16
18	1S(1), ZS(1)		17
19	EQUIVALENCE (TIX,SI), (TIY,ALP), (TIZ,BET), (T2X,ICON1), (T2Y,ICON	NH	18
20	12), (T2Z, ITAG), (XS, X), (YS, Y), (ZS, Z)		19
21	EQUIVALENCE (T1XJ,CABJ), (T1YJ,SABJ), (T1ZJ,SALPJ), (T2XJ,B), (T2Y	NH	20
22	1J.IND1), (T2ZJ,IND2)		21
23	EQUIVALENCE (CAB, ALP), (SAB, BET)	NH NH	22 23
24	HX = (0., 0.)	NH	23
25	HY = (0.0.)	NH	24
26	HZ = (0., 0.)	NH	25
27	AX=0.	NH	27
28	IF (N.EQ.O) GO TO 4	NH	28
29	DO 1 I=1,N	NH	29
30	XJ=XOB-X(I)	NH	30
31	YJ=YOB-Y(I)	NH	31
32	ZJ=ZOB-Z(I)	NH	32
33	ZP=CAB(I)*XJ+SAB(I)*YJ+SALP(I)*ZJ	NH	33
34	IF (ABS(ZP).GT.0.5001*SI(I)) GO TO 1	NH	34
35	ZP=Xj*Xj+Yj*Yj+Zj*Zj-ZP*ZP	NH	35
36	$XJ = \Theta I(I)$	NH	36
37	IF (ZP.GT.0.9*XJ*XJ) GO TO 1	NH	37
38	AX=XJ	NH	38
39	GO TO 2	NH	39
40 1	CONTINUE	ΝH	40
41 2	DO 3 I=1,N	NH	41
42	S=SI(I)	NH	42
43	B=BI(I)	NH	43
44	X J=X(I)	NH	44
45	Y J = Y (I)	NH	45
46	ZJ=Z(I)	NH	46
47	CABJ=CAB(I)	NH	47
48 49	SABJ=SAB(I) SALPJ=SALP(I)	NH	48
49 50	SALPJ#SALP(1) CALL HSFLD (XOB,YOB,ZOB,AX)	NH	49
51	ACX=CMPLX(AIR(I),AII(I))	NH	50
52	BCX=CMPLX(AIR(I),BII(I))	NH	51
53	CCX=CMPLX(CIR(I),CII(I))	NH	52
54	HX=HX+EXK+ACX+EXS+BCX+EXC+CCX		53
55	HY=HY+EYK+ACX+EYS+BCX+EYC+CCX	NH NH	54 55
56 3	HZ=HZ+EZK+ACX+EZS+BCX+EZC+CCX	NH	55 56
57	IF (M.EQ.O) RETURN	NH	36 57
58 4	JC=N	NH	58
59	JL=LD+1	NH	30 59
60	DO 5 I=1,M	NH	60
51	JL=JL-1	NH	61
62	S=BI(JL)	NH	62
63	XJ=X(JL)	NH	63
64	YJ=Y(JL)	NH	64

NHFLD

65	ZJ=Z(JL)	ИН	65
66	T1XJ=T1X(JL)	NH	66
67	TIYJ=TIY(JL)	NH	67
68	T1ZJ=T1Z(JL)	NH	68
69	T2XJ=T2X(JL)	NH	69
70	T2YJ=T2Y(JL)	NH	70
71	T2ZJ=T2Z(JL)	NH	71
72	CALL HINTG (XOB, YOB, ZOB)	NH	72
73	JC=JC+3	NH	73
74	ACX=T1XJ*CUR(JC-2)+T1YJ*CUR(JC-1)+T1ZJ*CUR(JC)	NH	74
75	BCX=T2XJ*CUR(JC-2)+T2YJ*CUR(JC-1)+T2ZJ*CUR(JC)	NH	75
76	HX=HX+ACX*EXK+BCX*EXS	NH	76
77	HY=HY+ACX+EYK+BCX+EYS	NH	77
78 5	HZ=HZ+ACX*EZK+BCX*EZS	NH	78
79	RETURN	NH	79
80	END	NH	80-

PURPOSE

To generate patch data for surfaces.

METHOD

The code from PA14 to PA129 generates data for a single new patch or multiple patches. There are four options for defining a single patch, as illustrated in Figure 5 of Part III. For a single patch, NX is zero and NY is NS + 1 where NS is the parameter from the SP input card and is shown on Figure 5. Rectangular, triangular or quadrilateral patches are defined by the coordinates of three or four corners in the parameters X1 though Z4. In the arbitrary shape option (Figure 5A in Part III) the center of the patch is X1, Y1, Z1; α is X2; β is Y2; and the area is Z2. The patch data is stored in COMMON/DATA/ from the top of the arrays downward (see Section III).

The code from PA131 to PA190 divides a patch into four patches and is used when a wire connects to a patch. If NY is equal to zero the patch NX is divided into four patches that become patches NX through NX + 3. Patches following NX are shifted in the arrays in COMMON/DATA/ to leave space for the three additional patches. If NY is greater than zero, patch NX is left in the arrays but four new patches to replace it are added to the end of the arrays. The z coordinate of patch NX is then changed to 10,000 at PA189.

SYMBOL DICTIONARY

MI	= array index for patch data
MIA	= array index for patch data
NTP	= patch type (NY for a single patch)
NX	= zero for a single patch. For multiple patches NX is
	defined in Figure 6 of Part III. After ENTRY SUBPH, NX
	is the number of the patch to be divided
SIX, SIY, SIZ	= vector from corner 1 to corner 2
S2X, S2Y, S2Z	= vector from corner 2 to corner 3
SALN	= <u>+</u> 1 from array SALP
SALPN	= factor in computing center of mass of quadrilateral

PATCH

XA =
$$|\vec{s}_1 \times \vec{s}_2|$$
 = area of rectangle or twice area of
triangle (PA53)
XN2, YN2, ZN2 = $\vec{s}_3 \times \vec{s}_4$ at PA79 to PA81. Line PA89 checks that the
four corners are coplanar by the test
 $(\vec{s}_1 \times \vec{s}_2) \cdot (\vec{s}_3 \times \vec{s}_4) / |\vec{s}_1 \times \vec{s}_2| |\vec{s}_3 \times \vec{s}_4| > 0.9998$
XNV, YNV, ZNV = unit vector normal to the patch at PA54 to PA56
XS, YS, ZS = patch center at PA151 to PA153
XST = $|\vec{s}_1 \times \vec{s}_2|$ at PA57

.

CONSTANTS

 $0.9998 \approx \cos(1.^{\circ})$ in test for planar patch

1	SUBROUTINE PATCH (NX,NY,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4)	PA	1
2		PA	2
3	COMMON /DATA/ LD.N1,N2,N,NP.M1,M2,M,MP.X(300),Y(300),Z(300),SI(300		3
4	1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(PA	4
5	2300),WLAM, IPSYM	ΡΑ	5
6	COMMON /ANGL/ SALP(300)	PA	6
7	DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)	PA	7
8	EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON	PA	8
9	12), (T2Z,ITAG)	FA	9
10		PA	10
11		PA	11
12		PA	12
13		PA	13
14	M=M+1	PA	14
15	MI=LD+1-M	PA	15
16	NTP=NY	PA	16
17	IF (NX.GT.O) NTP=2	PA	17
18	IF (NTP.GT.1) GO TO 2	PA	
19	X(MI)=X1		18
20	Y(MI)=Y1	PA	19
		PA	20
21	Z(MI)=Z1	PA	21
22	BI(MI)=Z2	PA	22
23	ZNV=COS(X2)	ΡΑ	23
24	XNV=ZNV+COS(Y2)	PA	24
25	YNV=ZNV•SIN(Y2)	PA	25
26	2NV = SIN(X2)	PA	26
27	XA=SQRT(XNV+XNV+YNV+YNV)	PA	27
28	IF (XA.LT.1.E-6) GO TO 1	PA	28
29	T1X(MI) = -YNV/XA	PA	29
30	T1Y(MI)=XNV/XA	PA	30
31	T1Z(MI)=0.	PA	31
32	GO TO 6	PA	32
33	1 $T1X(MI)=1$.	ΡA	33
34	T1Y(MI)=0.	PA	34
35	T1Z(MI)=0.	PA	35
36	GO TO 6	PA	36
37		PA	37
38	S1Y=Y2-Y1	PA	38
39	S1Z=Z2-Z1	PA	39
40			
	S2X=X3-X2	PA	40
41	S2Y=Y3-Y2	PA	41
42		PA	42
43		PA	43
44		PA	44
45		PA	45
46	S1Z=S1Z/NX	PA	46
47		PA	47
48		ΡΑ	48
49	•	PA	49
50		PA	50
51	YNV=S1Z*S2X-S1X*S2Z	PA	51
52	ZNV=S1X+S2Y-S1Y+S2X	PA	52
53	XA=SQRT(XNV+XNV+YNV+YNV+ZNV+ZNV)	PA	53
54	XNV=XNV/XA	PA	54
55	ΥΝV=ΥΝV/ΧΑ	PA	55
56	ZNV=ZNV/XA	PA	56
57		PA	57
58		PA	58
59		PA	59
60		PA	60
61		PA	61
62		PA PA	62
63		PA	62 63
64		PA	ია 64
04	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	ГA	Q4

6 5	BI(MI)=XA	PA 65
66	GO TO 6	PA 66
67 4	IF (NTP.EQ.4) GO TO 5	PA 67
68	X(MI) = (X1 + X2 + X3)/3.	PA 68
69	Y(MI) = (Y1 + Y2 + Y3)/3.	PA 69
70 71	Z(MI) = (Z1 + Z2 + Z3)/3	PA 70
71	BI(MI)=.5*XA	PA 71
73 5	GO TO 6 S1X=X3-X1	PA 72
73 5	S1X=X3=X1 S1Y=Y3=Y1	PA 73
75	S1Z=Z3-Z1	PA 74
76	S2X=X4-X1	PA 75
77	S2Y=Y4-Y1	PA 76
78	\$2Z=Z4-Z1	PA 77
79	XN2=S1Y*S2Z-S1Z*S2Y	PA 78
80	YN2=S1Z*S2X-S1X*S2Z	PA 79
81	ZN2=S1X*S2Y-S1Y*S2X	PA 80 PA 81
82	XST=SQRT(XN2*XN2+YN2*YN2+ZN2*ZN2)	PA 82
83	SALPN=1./(3.*(XA+XST))	PA 83
84	X(MI)=(XA*(X1+X2+X3)+XST*(X1+X3+X4))*SALPN	PA 84
85	Y(MI)=(XA*(Y1+Y2+Y3)+XST*(Y1+Y3+Y4))*SALPN	PA 85
86	Z(MI)=(XA*(Z1+Z2+Z3)+XST*(Z1+Z3+Z4))*SALPN	PA 86
87	BI(MI) = .5*(XA+XSI)	PA 87
88	S1X=(XNV*XN2+YNV*YN2+ZNV*ZN2)/XST	PA 88
89	IF (S1X.GT.0.9998) GO TO 6	PA 89
90	PRINT 14	PA 90
91		PA 91
92 6 93	T2X(MI) = YNV + T1Z(MI) - ZNV + T1Y(MI)	PA 92
94	T2Y(MI)=ZNV+T1X(MI)-XNV+T1Z(MI) T2Z(MI)=XNV+T1Y(MI)-YNV+T1X(MI)	PA 93
95	SALP(MI)=1.	PA 94
96	IF (NX.EQ.0) GO TO 8	PA 95
97	M=M+NX*NY-1	PA 96
98	XN2=X(MI)-S1X-S2X	PA 97 PA 98
99	YN2=Y(MI)~S1Y-S2Y	PA 98
100	ZN2=Z(MI)-S1Z-S2Z	PA 100
101	XS=T1X(MI)	PA 101
102	YS=TIY(MI)	PA 102
103	ZS=TIZ(MI)	PA 103
104	XT=T2X(MI)	PA 104
105	YI=T2Y(MI)	PA 105
106	ZT=T2Z(MI)	PA 106
107	MI = MI + 1	PA 107
108	DO 7 IY=1,NY	PA 108
109	XN2=XN2+S2X	PA 109
110 111	YN2=YN2+S2Y 7N2=7N2+S27	PA 110
112	ZN2=ZN2+S2Z DO 7 IX=1,NX	PA 111
112	XST=IX	PA 112
114	MI=MI-1	PA 113
115	$X(MI) = XN2 + XST \cdot S1X$	PA 114 PA 115
116	Y(MI)=YN2+XST*S1Y	PA 116
117	Z(MI)=ZN2+XST*S1Z	PA 117
118	BI(MI)=XA	PA 118
119	SALP(MI)=1	PA 119
120	T1X(MI)=XS	PA 120
121	T1Y(MI)=YS	PA 121
122	T1Z(MI)=ZS	PA 122
123	T2X(MI)=XT	PA 123
124	T2Y(MI)=YT	PA 124
125 7 126 8	T2Z(MI)=ZT IPSYM=0	PA 125
126 8		PA 126
128	MP=M	PA 127
		PA 128

4.00	65710.	
129		PA 129
130 C	DIVIDE PATCH FOR WIRE CONNECTION	PA 130
131	ENTRY SUBPH(NX,NY,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4)	PA 131
132 133	IF (NY.GT.0) GO TO 10	PA 132
134	IF (NX.EQ.M) GO TO 10	PA 133
135	NXP=NX+1 IX=LD- M	PA 134
136	DO 9 IY=NXP,M	PA 135
137	IX=IX+!	PA 136
138	NYP=IX-3	PA 137
139	X(NYP)=X(IX)	PA 138
140	Y(NYP)=Y(IX)	PA 139
141	Z(NYP)=Z(IX)	PA 140 PA 141
142	BI(NYP)=BI(IX)	PA 141
143	SALP(NYP)=SALP(IX)	PA 143
144	T1X(NYP) = T1X(IX)	PA 144
145	T1Y(NYP) = T1Y(IX)	PA 145
146	T1Z(NYP) = T1Z(IX)	PA 146
147	T2X(NYP) = T2X(IX)	PA 147
148	T2Y(NYP)=T2Y(IX)	PA 148
149 9	T2Z(NYP)=T2Z(IX)	PA 149
150 10	MI=LD+1-NX	PA 150
151	XS=X(MI)	PA 151
152	YS=Y(MI)	PA 152
153	ZS=Z(MI)	PA 153
154	XA=BI(MI)*.25	PA 154
155	XST=SQRT(XA)•.5	PA 155
156	S1X=T1X(MI)	PA 156
157	S1Y=T1Y(MI)	PA 157
158	SIZ=TIZ(MI)	PA 158
159	S2X=T2X(MI)	PA 159
160	S2Y=T2Y(MI)	PA 160
161	S2Z=T2Z(MI)	PA 161
162	SALN=SALP(MI)	PA 162
163	XT=XST	PA 163
164	YT=XST	PA 164
165	IF (NY.GT.O) GO TO 11	PA 165
166	MIA=MI	PA 166
167		PA 167
168 11 169		PA 168
170		PA 169
171 12	MIA=LD+1-M DO 13 IX=1,4	PA 170
171 12	X(MIA)=XS+XT*S1X+YT*S2X	PA 171
173	Y(MIA) = YS + XI + SI Y + YI + S2Y	PA 172 PA 173
174	Z(MIA) = ZS + XT + S1Z + YT + S2Z	PA 173 PA 174
175	BI(MIA)=XA	PA 175
176	T1X(MIA)=S1X	PA 176
177	TIY(MIA)=SIY	PA 177
178	T1Z(MIA)=S1Z	PA 178
179	T2X(MIA)=S2X	PA 179
180	T2Y(MIA)=S2Y	PA 180
181	T2Z(MIA)=S2Z	PA 181
182	SALP(MIA)=SALN	PA 182
183	IF (IX.EQ.2) YT=-YT	PA 183
184	IF $(IX, EQ, 1, OR, IX, EQ, 3)$ $XT = -XT$	PA 184
185	MIA=MIA-1	PA 185
186 13	CONTINUE	PA 186
187	M=M+3	PA 187
188	IF (NX.LE.MP) MP=MP+3	PA 188
189	IF (NY.GT.O) Z(MI)=10000.	PA 189
190	RETURN	PA 190
191 C	FORMAT (SOU FREDE CORNERS OF ALLARET ATERAL RETAIL DO NOT LITE TH	PA 191
192 14	FORMAT (62H ERROR CORNERS OF QUADRILATERAL PATCH DO NOT LIE IN	PA 192

PATCH

193	1A PLANE)	
194	END	PA 193 PA 194-

PCINT

PURPOSE

To compute the interaction matrix elements representing the electric field, tangent to a segment connected to a surface, due to the current on the four patches around the connection point.

METHOD

The four patches at the base of a connected wire are located as shown in figure 10 with respect to the vectors \hat{t}_1 and \hat{t}_2 , where patch numbers indicate the order of the patches in the data arrays. The position of a point on the surface is defined by $\bar{\rho}$ (S_1, S_2) = $\bar{\rho}_0 + S_1 \hat{t}_1 + S_2 \hat{t}_2$, where $\bar{\rho}_0$ is the position of the center of the four patches where the wire connects, and S_1 and S_2 are coordinates measured from the center. The current over the surface is represented by $\bar{J}(S_1, S_2)$, the currents at the centers of the four patches are

$$J_{1} = \overline{J}(d,d)$$

$$\overline{J}_{2} = \overline{J}(-d,d)$$

$$\overline{J}_{3} = \overline{J}(-d,-d)$$

$$\overline{J}_{4} = \overline{J}(d,-d)$$

and the current at the base of the segment, flowing onto the surface, is I_0 . The current interpolation function is then

$$\overline{J}(S_1,S_2) = \left[\overline{f}(S_1,S_2) - \sum_{i=1}^4 g_i(S_1,S_2) \overline{f}_i\right] I_0 + \sum_{i=1}^4 g_i(S_1,S_2)\overline{J}_i,$$

where

$$\vec{f}(s_1, s_2) = \frac{s_1 \hat{t}_1 + s_2 \hat{t}_2}{2\pi (s_1^2 + s_2^2)}$$

$$\vec{f}_1 = \vec{f}(d, d) = (\hat{t}_1 + \hat{t}_2)/(4\pi d)$$

$$\vec{f}_2 = \vec{f}(-d, d) = (-\hat{t}_1 + \hat{t}_2)/(4\pi d)$$

$$\vec{f}_3 = \vec{f}(-d, -d) = (-\hat{t}_1 - \hat{t}_2)/(4\pi d)$$

$$\vec{t}_4 = \vec{t}(d, -d) = (\hat{t}_1 - \hat{t}_2)/(4\pi d)$$

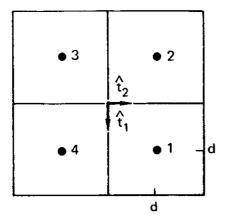


Figure 10. Patches at a Wire Connection Point.

$$g_{1}(S_{1},S_{2}) = (d + S_{1})(d + S_{2})/(4d^{2})$$

$$g_{2}(S_{1},S_{2}) = (d - S_{1})(d + S_{2})/(4d^{2})$$

$$g_{3}(S_{1},S_{2}) = (d - S_{1})(d - S_{2})/(4d^{2})$$

$$g_{4}(S_{1},S_{2}) = (d + S_{1})(d - S_{2})/(4d^{2})$$

If $\overline{\Gamma}_1(\overline{\rho}) dA$ and $\overline{\Gamma}_2(\overline{\rho}) dA$ are the electric fields at the center of the connected segment due to unit currents at $\overline{\rho}$ on the surface dA, flowing in the directions \hat{t}_1 and \hat{t}_2 , respectively, the nine matrix elements to be computed are

$$E_{1} = \int_{S} g_{1}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{2} = \int_{S} g_{2}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{3} = \int_{S} g_{3}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{4} = \int_{S} g_{4}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{5} = \int_{S} g_{1}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{2}(\overline{\rho}) dA$$

$$E_{6} = \int_{S} g_{2}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{2}(\overline{\rho}) dA$$

$$E_{7} = \int_{S} g_{3}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{2}(\overline{\rho}) dA$$

$$E_{8} = \int_{S} g_{4}(S_{1}, S_{2}) \quad \hat{i} \quad \overline{\Gamma}_{2}(\overline{\rho}) dA$$

$$E_{9} = \int_{S} \left\{ \left[\overline{h}(S_{1}, S_{2}) \quad \cdot \quad \hat{t}_{1} \right] \quad \left[\hat{i} \quad \overline{\Gamma}_{1}(\overline{\rho}) \right] + \left[\overline{h}(S_{1}, S_{2}) \quad \cdot \quad \hat{t}_{2} \right] \right\} dA$$

where

$$\overline{h}(S_1,S_2) = \overline{f}(S_1,S_2) - \sum_{i=1}^{4} g_i(S_1,S_2)\overline{f}_i,$$

and where \hat{i} = the unit vector in the direction of the connected segment.

The integration is over the total area of the four patches and is performed by numerical quadrature. The number of increments in S_1 and S_2 used in integration is set by the variable NINT. When PCINT is called, the parameters in COMMON/DATAJ/ have the values for the first connected patch. During integration, these parameters are set for each integration patch. At the end of PCINT, they are reset to their original values.

SYMBOL DICTIONARY

E1 = E₁ E2= E₂ ē3 $= E_{3}$ = E₄ E4 E5 = E₅ $= E_6$ E6 $= E_{7}$ E7 $= E_{g}$ E8 $= E_{o}$ E9 FCON = $1/(4\pi d)$ factor in $\overline{f}_1, \overline{f}_2, \ldots$ $= \overline{h}(S_1, S_2) \cdot \hat{t}_1$ $= \overline{h}(S_1, S_2) \cdot \hat{t}_2$ F1F2 GCON = $1/(4d^2)$ factor in $g_1(S_1, S_2), ...$ $= g_1(S_1, S_2)$ G1 $G2 = g_2(S_1, S_2)$ $G_3 = g_3(S_1, S_2)$ $G4 = g_4(S_1, S_2)$ = DO loop index I1 12 = DO loop index NINT = number of steps in S_1 and S_3 used in approximating the integrals for $E_1, E_2, ..., E_9$ = area of each of the four patches at PC11; area of the surface S element used in integration at PC20 SABI = y component of \hat{i} SALPI = z component of \hat{i} **S1** = S₁ $= S_2$ S2 S2X = initial value of S_2 = 2π TPI TIXJ TIYJ = x, y, and z components of \hat{t}_1 TIZJ T2X.1 $T2YJ = x, y, and z components of \hat{t}_{2}$ T2ZJ = x coordinate of the center of the connected segment Χì

XЈ = center of first patch above PC41; center of integration element ΥJ below PC41 ZJ XS = x component of $\overline{\rho}(S_1, S_2)$ = initial x coordinate of $\overline{\rho}(S_1, S_2)$ XSS XXJ] XYJ = initial value of XJ, YJ, ZJ saved XZJ = x component of $\overline{\rho}(d,d)$ used as reference for computing $\overline{\rho}(S_1,S_2)$ X1 = y coordinate of the center of the connected segment ΥĽ = y component of $\overline{\rho}(S_1, S_2)$ YS = initial y component of $\overline{\rho}(S_1, S_2)$ YSS = y component of $\overline{\rho}(d,d)$ Y1 = z coordinate of the center of the connected segment ΖI = z component of $\overline{\rho}(S_1, S_2)$ ZS = initial z component of $\overline{\rho}(S_1, S_2)$ ZSS = z component of $\overline{\rho}(d,d)$ Zl

1 2 C 3	SUBROUTINE PCINT (XI,YI,ZI,CABI,SABI,SALPI,E) C INTEGRATE OVER PATCHES AT WIRE CONNECTION POINT COMPLEX EXK.EYK.EZK.EXS.EYS.EZS.EXC.EYC.EZC.E.E1.E2.E3.E4.E5.E6.E7	PC PC PC	1 2 3
4	1, £8, £9	PC	3 4
5 6	COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ 1S,EXC,EYC,EZC,RKH,IEXK,IND1,IND2,IPGND	PC PC	5 6
7	DIMENSION E(9)	PC	7
8 9	EQUIVALENCE (T1XJ,CABJ), (T1YJ,SABJ), (T1ZJ,SALPJ), (T2XJ,B), (T2Y 1J,IND1), (T2ZJ,IND2)	PC PC	8 9
10	DATA TPI/6.283185308/,NINT/10/	PC	10
11 12	D=SQRT(S)+.5 DS=4.+D/FLOAT(NINT)	PC	11
13	DA=DS*DS	PC PC	12 13
14	GCON=1./S	PC	14
15 16	FCON≃1./(2.*TPI*D) XXJ=XJ	PC PC	15
17	XYJ=YJ	PC	16 17
18	XZJ=ZJ	PC	18
19 20	XS=S S=DA	PC	19
21	S1=D+DS*.5	PC PC	20 21
22	XSS=XJ+S1*(T1XJ+T2XJ)	PC	22
23 24	Y\$\$=YJ+\$1*(T1YJ+T2YJ) 766-7 (+ 61*(T17)+T27)	PC	23
25	ZSS=ZJ+S1 * (T1ZJ+T2ZJ) S1=S1+D	PC PC	24 25
26	\$2X=\$1	PC	26
27	E = (0, 0, 0)	PC	27
28 29	E2=(0.,0.) E3=(0.,0.)	PC PC	28 29
30	E4=(0,0.)	PC	30
31	E5=(0.,0.)	PC	31
32 33	E6=(0.,0.) E7=(0.,0.)	PC PC	32 33
34	$E 8 \approx (0.00)$	PC	34
35	E9=(0.,0.)	PC	35
36	$\begin{array}{c} DO 1 I = 1 \text{, NINT} \\ S 1 = S 1 = OS \end{array}$	PC PC	36 37
37 38	S1=S1-DS S2=S2X	PC	38
39	XSS=XSS-DS+T1XJ	PC	39
40	YSS=YSS-DS+T1YJ	PC PC	40 41
41 42	ZSS=ZSS-DS*T1ZJ XJ=XSS	PC	42
43	YJ=YSS	PC	43
44	ZJ=ZSS	PC PC	44 45
45 46	DQ 1 I2=1,NINT S2=S2-DS	PC	46 46
47	X J=X J=DS*T2X J	PC	47
48	YJ=YJ-DS•T2YJ	PC	48
49 50	ZJ=ZJ-DS*T2ZJ CALL UNERE (XI,YI,ZI)	PC PC	49 50
51	EXK=EXK*CABI+EYK*SABI+EZK*SALPI	PC	51
52	EXS=EXS*CABI+EYS*SABI+EZS*SALPI	PC	52
53 54	G1=(D+S1)*(D+S2)*GCON G2=(D-S1)*(D+S2)*GCON	PC PC	53 54
55	$G_3 = (D - S_1) \cdot (D - S_2) \cdot GCON$	PC	55
56	$G4=(D+S1) \bullet (D-S2) \bullet GCON$	PC	56
57 58	F2=(S1+S1+S2+S2)+TPI F1=S1/F2-(G1-G2-G3+G4)+FCON	PC PC	57 58
59	F2=S2/F2-(G1+G2-G3-G4)*FCON	PC	59
60	$E1 = E1 + EXK \bullet G1$	PC	60 61
61 62	E2=E2+EXK*G2 E3=E3+EXK*G3	PC PC	61 62
63	E4=E4+EXK*G4	PC	6 J
64	E5=E5+EXS*G1	PC	64

65	E6=E6+EXS+G2	PC	65
66	E7=E7+EXS*G3	PC	66
67	E8=E8+EXS*G4	PC	67
68 1	E9=E9+EXK •F1+EXS •F2	PC	68
69	E(1)≕E1	PC	69
70	E(2)=E2	PC	70
71	E(3)=E3	PC	71
72	E(4)=E4	PC	72
73	E(5)=E5	PC	73
74	E(6)=E6	PC PC	
75	E(7)=E7	PC	74
76	E(8)=E8		75
77	E(9)=E9	PC	76
78	X J=XXJ	PC	77
79	YJ=XYJ	PC	78
80	ZJ=XZJ	PC	79
81	S=XS		80
		PC	81
82	RETURN	PC	82
83	END	PC	83-

PCINT

PRN'I

PURPOSE

To set up the formats for printing a record of three integers, six floating point numbers, and a Hollerith string, where the variables equal to zero are replaced by blanks. This routine is used by LOAD in printing the impedance data table.

METHOD

A variable format is used to generate the record with arbitrary blank fill. Elements of the format are picked from the array IFORM in the DATA statement. Through IF statements operating on the subroutine input quantities, this routine chooses the desired format elements and builds the format in the array IVAR. The program is divided into two sections: the first builds the integer part of the format and the second the floating point part.

SYMBOL DICTIONARY

ABS	= external routine (absolute value)
FL	= elements of this array are set equal to the floating point input
	quantities FL1 - FL6
FLT	= array of non-zero floating point input quantities to be printed
FL1	
FL2	
FL3	= input floating point quantities
FL4	
FL5	
FL6	
HALL	= 4H ALL (Hollerith ALL)
Ι	= DO loop index
IA	= input Hollerith string (array)
ICHAR	= number of characters in the input Hollerith string
IFORM	= array containing format elements
IN	= array set equal to input integer quantities (IN1 - IN3)
INT	= non-zero integer quantities to be printed
INI	
IN2	= input integer quantities
IN3 J	
IVAR	= variable format array

IL = DO	loop	limit
---------	------	-------

- J = implied DO loop index
- K = index parameter

L = implied DO loop index

NCPW = number of Hollerith characters per computer word

NFLT = floating point print index, number of non-zero reals

NINT = integer print index; number of non-zero integers

NWORDS = number of computer words in the input Hollerith string

PRNT

1		SUBROUTINE PRNT (IN1, IN2, IN3, FL1, FL2, FL3, FL4, FL5, FL6, IA, ICHAR)	PR	1
2			PR	2
	С	PRNT SETS UP THE PRINT FORMATS FOR IMPEDANCE LOADING	PR	3
	С		PR	4
5		DIMENSION IVAR(13), $IA(1)$, $IFORM(8)$, $IN(3)$, $INT(3)$, $FL(6)$, $FLT(6)$	PR	5
6		INTEGER HALL	PR	6
7		DATA IFORM/5H(/3X,,3HI5,,3H5X,,3HA5,,6HE13.4,,4H13X,,3H3X,,5H2A10)	PR	7
8	1	/	PR	8
9	С		PR	9
10	С	NUMBER OF CHARACTERS PER COMPUTER WORD IS NCPW	PR	10
11	С		PR	
12		DATA NCPW/10/,HALL/4H ALL/		11
13		NWORDS=(ICHAR-1)/NCPW+1	PR	12
14		IN(1)=IN1	PR	13
15		IN(2)=IN2	PR	14
16		IN(3) = IN3	PR	15
17		FL(1)=FL1	PR	16
		•••	PR	17
18		$FL(2) \Rightarrow FL2$	PR	18
19		FL(3)=FL3	PR	19
20		FL(4)=FL4	PR	20
21		FL(5)=FLS	PR	21
22	_	FL(6)=FL6	PR	22
23			PR	23
24		INTEGER FORMAT	PR	24
25	С		PR	25
26		NINT=0	PR	26
27		IVAR(1)=IFORM(1)	PR	27
28		K=1	PR	28
29		I 1=1	PR	29
30		IF (.NOT.(IN1.EQ.O.AND.IN2.EQ.O.AND.IN3.EQ.O)) GO TO 1	PR	30
31		INT(1)=HALL	PR	31
32		NINT=1	PR	32
33		I1=2	PR	33
34		K=K+1	PR	34
35		IVAR(K)=IFORM(4)	PR	35
36	1	DO 3 I=I1,3	PR	36
37	,	K=K+1	PR	37
38		IF (IN(I).EQ.0) GO TO 2	PR	
39				38
			PR	39
40		INT(NINT)=IN(I)	PR	40
41		IVAR(K)=IFORM(2)	PR	41
42	_	GO TO 3	PR	42
43		IVAR(K) = IFORM(3)	PR	43
44		CONTINUE	PR	44
45		K=K+1	PR	45
46		IVAR(K)=IFORM(7)	PR	46
47	С		PR	47
48	С	FLOATING POINT FORMAT	PR	48
49	С		PR	49
50		NFLT=0	₽R	50
51		DO 5 I=1,6	PR	51
52		K=K+1	PR	52
53		IF (ABS(FL(I)).LT.1.E-20) GO TO 4	PR	53
54		NFLT=NFLT+	PR	54
55		FLT(NFLT)=FL(I)	PR	55
56		IVAR(K)=IFORM(5)	PR	56
57		GQ TO 5	PR	57
58	4	IVAR(K)=IFORM(6)	PR	58
59		CONTINUE	PR	59
60	5	K=K+1	PR	
				60 51
61		IVAR(K)=IFORM(7)	PR	61
62 63		K=K+1 IVAR(K)=IFORM(8)	PR PR	62 63
64		PRINT IVAR, (INT(I), I=1, NINT), (FLT(J), J=1, NFLT), (IA(L), L=1, NWORDS)		64
04		······································		04

65	RETURN	PR	65
66	END	PR	66
00	END		••

QDSRC

PURPOSE

To fill the excitation array for a current slope discontinuity voltage source.

METHOD

The current slope discontinuity voltage source is described in section IV-1 of Part I.

CODING

- QD22 QD25 The connection number for end 1 of segment IS is temporarily set to 0, and TBF is called to generate the function $f_{\ell}^{*}(s)$ for ℓ - IS. The zero in the second argument of TBF causes f_{ℓ}^{*} to go to zero at the first end of segment IS rather than the usual non-zero value that allows for current flowing onto the wire end cap.
- QD26 QD31 β_{0} is computed and other quantities set.
- QD32 QD119 This loop computes the fields due to each segment on which f_{ϱ}^{\star} is non-zero.
- QD33 QD77 Parameters of the source segment are stored in COMMON/ DATAJ/. Flags for the extended thin wire approximation are set as in routine CMSET.

QD78 - QD91 This loop evaluates the electric field on each segment. QD95 - QD116 This loop evaluates the magnetic field at each patch.

SYMBOL DICTIONARY

= radius of segment on which field is evaluated. ΑI CABI = x component of unit vector in the direction of segment I CCJ = CCJX = -i/60 $CURD = \beta_{o}$ = array of segment and patch excitation fields Е ETC = E field tangent to a segment or H field components on a patch due to cosine, constant, and sine current components, ETK ETS respectively, on a segment = array index for patch excitation 11 = flag which, if zero, indicates that the field is being evaluated IJ on the source segment

IPR = temporary storage of connection number = segment which has the source location on end 1 IS J = source segment number SABI = y component of unit vector in the direction of segment I T1X T1Y T1Z= arrays of components of \hat{t}_1 and \hat{t}_2 for patches T2X T2Y T2Z ТΡ $= 2\pi$ TΧ = components of \hat{t}_1 or \hat{t}_2 for patches ТΥ ΤZ V = source voltage = coordinates of point where field is evaluated; XI is also XΙ used in the test for the extended thin wire approximation ΥI ZI for the electric field

CONSTANTS

QDSRC

	•··••		
1	SUBROUTINE QDSRC (IS,V,E)	QD	1
2 C 3	FILL INCIDENT FIELD ARRAY FOR CHARGE DISCONTINUITY VOLTAGE SOURCE	QD	2
4	COMPLEX VQDS, CURD, CCJ, V, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, ETK, ET	QD	3
5	15, ETC, VSANT, VQD, E, ZARRAY	QD	4
6	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	QD	5
7	1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(2300),WLAM,IPSYM		6
8	COMMON /VSORC/ VQD(30),VSANT(30),VQDS(30),IVQD(30),ISANT(30),IQDS(QD	7
9	130),NVQD,NSANT,NQDS		8
10	COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	QD	9
11	1CON(10),NPCON		10
12	COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ	QD QD	11
13	1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND		12
14	COMMON /ANGL/ SALP(300)	QD QD	13 14
15	COMMON /ZLOAD/ ZARRAY(300),NLOAD,NLODF	QD	15
16	DIMENSION CCJX(2), E(1), CAB(1), SAB(1)	QD	16
17	DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)	QD	17
18	EQUIVALENCE (CCJ,CCJX). (CAB,ALP). (SAB,BET)	op	18
19	EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON	QD	19
20	12), (T2Z.ITAG)	QD	20
21	DATA TP/6.283185308/.CCJX/0016666666667/	QD	21
22	I=ICON1(IS)	QD	22
23	ICON1(IS)=0	QD	23
24 25	CALL TBF (IS,0)	QD	24
25 26	ICON1(IS)=I S=SI(IS)+.5	QD	25
27		QD	26
28	CURD=CCJ+V/((ALOG(2.*S/BI(IS))-1.)*(BX(JSNO)*COS(TP*S)+CX(JSNO)*SI 1N(TP*S))*WLAM)		27
29	NQDS=NQDS+1	QD	28
30	VQDS(NQDS)=V	QD	29
31	IQDS(NQDS)=IS	QD	30
32	DO 20 JX=1, JSNO	QD	31
33	J=JCO(JX)	QD QD	32 33
34	S=SI(J)	QD	33 34
35	B=BI(J)	QD	35
36	XJ=X(J)	QD	36
37	Y J=Y(J)	QD	37
38	Z J=Z(J)	QD	38
39	CABJ=CAB(J)	QÐ	39
40	SABJ=SAB(J)	QD	40
41	SALPJ=SALP(J)	QD	41
42	IF (IEXK.EQ.0) GO TO 16	QD	42
43	IPR=ICON1(J)	QD	43
44	IF (IPR) 1,6,2	QD	44
45 1 46	IPR = -IPR	QD	
46	IF (-ICON1(IPR).NE.J) GO TO 7 GO TO 4	QD	46
48 2	IF (IPR.NE.J) GO TO 3	QD	47
49	IF (IFR.NE.J) GO TO S IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 7	QD	48
50	GO TO 5	QD	49 50
51 3	IF (ICON2(IPR).NE.J) GO TO 7	QD QD	50 51
52 4		QD QD	52
53	IF (XI.LT.0.999999) GO TO 7	QD QD	52 53
54	IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 7	QD	54
55 5	TND 1	0D	55
56		QD	56
57 6		QD	57
58	CO TO 8	QD	58
59 7	IND1=2	QD	59
60 6	IPR=ICON2(J)	QD	60
61	IF (IPR) 9,14,10	QD	61
629 63	IPR=-IPR	QD	62
63 64		QD	63
V -		QD	64

.

			•	
65	10	IF (IPR.NE.J) GO TO 11	QD	65
66		IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 15	QD	66
67		GO TO 13	0D	67
68	11	IF (ICON1(IPR).NE.J) GO TO 15	QD	68
69	12	XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))	QD	69
70		IF (XI.LT.0.999999) GO TO 15	QD	70
71		IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 15	QD	71
72	13	IND2=0	QD	72
73		GO TO 16	QD	73
74	14	IND2=1	QD	74
75		GO TO 16	QD.	75
76	15	IND2=2	QD	76
77		CONTINUE	QD	77
78		DO 17 I=1,N	QD	78
79		IJ=I-J	QD	79
80		XI=X(I)	-	
81		YI=Y(I)	QD	80
82		ZI=Z(I)	QD	81
83		AI=BI(I)	QD	82
84		CALL EFLD (XI,YI,ZI,AI,IJ)	QD	83
85		CABI=CAB(I)	QD	84
86			QD	85
87		SABI=SAB(I)	QD	86
88		SALPI=SALP(I)	QD	87
		ETK=EXK*CABI+EYK*SABI+EZK*SALPI	QD	88
89		ETS=EXS*CABI+EYS*SABI+EZS*SALPI	QD	89
90		ETC=EXC*CABI+EYC*SABI+EZC*SALPI	QD	90
91	17	E(I)=E(I)-(ETK*AX(JX)+ETS*BX(JX)+ETC*CX(JX))*CURD	QD	91
92		IF (M.EQ.0) GO TO 19	QD	92
93		IJ=LD+1	QD	93
94		I1=N	QD	94
95		DO 18 I=1,M	QD	95
96		IJ=IJ-1	QD	96
97		XI=X(IJ)	QD	97
98		YI=Y(IJ)	QD	98
99		ZI=Z(IJ)	QD	99
100		CALL HSFLD (XI,YI,ZI,O.)	QD	100
101		I1=I1+1	QD	101
102		TX=T2X(IJ)	QD	102
103		TY=T2Y(IJ)	QD	103
104		TZ=T2Z(IJ)	QD	104
105		ETK=EXK*TX+EYK*TY+EZK*TZ	QD	105
106		ETS=EXS*TX+EYS*TY+EZS*TZ		106
107		ETC=EXC*TX+EYC*TY+EZC*TZ		107
108		E(I1)=E(I1)+(ETK*AX(JX)+ETS*BX(JX)+ETC*CX(JX))*CURD*SALP(IJ)		108
109		I1=I1+1		109
110		TX=T1X(IJ)		110
111		TY=TIY(IJ)		111
112		TZ=T1Z(IJ)		112
113		ETK≃EXK•TX+EYK•TY+EZK•TZ		113
114		ETS=EXS*TX+EYS*TY+EZS*TZ		114
115		ETC=EXC*TX+EYC*TY+EZC*TZ		115
116	18	E(I1)=E(I1)+(ETK*AX(JX)+ETS*BX(JX)+ETC*CX(JX))*CURD*SALP(IJ)		116
117		IF (NLOAD.GT.O.OR.NLODF.GT.O) $E(J)=E(J)+ZARRAY(J)*CURD*(AX(JX)+CX(JX))$	on	117
118		IJX))		118
119		CONTINUE		119
120		RETURN		120
121		END		121~
			ΨV	12,113

PURPOSE

To compute and print radiated field quantities.

METHOD

The quantities computed and the output formats depend on the options selected by the first integer (IFAR) and fourth integer (IPD, IAVP, INOR, IAX) on the RP card (see Part III). These quantities are defined as follows:

(1) Power Gain

In the direction (θ, ϕ)

$$G_{p}(\theta,\phi) = 4\pi \frac{P_{\Omega}(\theta,\phi)}{P_{in}},$$

where $P_{ij}(\vartheta, \phi)$ is the power radiated per unit solid angle in the given direction, and P_{in} is the total power accepted by the antenna. Therefore, $P_{in} = (1/2) \operatorname{Re}(VI^*)$, where V is the applied source voltage, and

$$P_{\Omega}(\theta,\phi) = (1/2) R^2 Re(\bar{E} X \bar{H}^*) = \frac{R^2}{2\eta} \bar{E} \cdot \bar{E}^*,$$

where R is the observation sphere radius. Since the electric field calculated by FFLD (call it \overline{E}^{1}) does not include $\exp(-jkR)/(R/\lambda)$,

$$\bar{E} = \frac{\exp(-jkR)}{R/\lambda} \bar{E}'$$

and

$$P_{\Omega} = \frac{\lambda^2}{2\eta} \left(\vec{E}' \cdot \vec{E}' * \right) .$$

Thus,

$$G_{P}(\theta, \phi) = \frac{2\pi\lambda^{2}}{\eta P_{in}} (\vec{E}' \cdot \vec{E}'*)$$

in terms of the program variables.

(2) Directive Gain

In the direction (θ, ϕ) ,

$$G_{d}(\theta,\phi) = 4\pi \frac{P_{\Omega}(\theta,\phi)}{P_{rad}}$$

where P_{rad} is the total power radiated by the antenna. The only difference from power gain is that P_{in} is replaced by P_{rad} , and $P_{rad} = P_{in} - P_{loss}$, where P_{loss} is calculated as the power lost in distributed and lumped loads on the structure and in the networks loads.

(3) Component Gain

The gains are also calculated for separate, orthogonal field components (u, v). In this case, $\overline{E}' \cdot \overline{E}'*$ is replaced by $\overline{E}'_{u} \overline{E}'_{u}*$ or $\overline{E}'_{v} \overline{E}'_{v}*$, and the total gain is the sum of the two components.

(4) Average Gain

The user specifies a range and number of points in theta and phi that in turn specify the total solid angle covered, Ω , and the sampling density for the integral in the expression for average gain:

$$G_{av} = \frac{\int_{\Omega}^{G} p \, d\Omega}{\Omega}$$

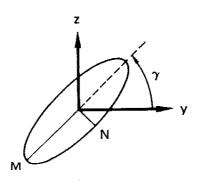
The trapezoidal rule is used in evaluating the integral.

(5) Normalized Gain

Normalized gain is simply the gain divided by its maximum value or some value specified by the user.

The discussion of gains applies only to the case of a structure used as a radiating antenna. For the case of an incident plane wave, the program constants are defined such that the value of σ/λ^2 is printed under the heading "GAIN." The calculation is

$$\frac{\sigma}{\lambda^2} = \frac{4\pi R^2}{\lambda^2} \frac{\frac{w_{scat}}{w_{inc}}}{\frac{w_{inc}}{w_{inc}}} = \frac{4\pi}{\bar{E}_{inc}} \cdot \frac{4\pi}{\bar{E}^*_{inc}} (\bar{E}'_{scat} \cdot \bar{E}'_{scat})$$


where W_{scat} is the scattered power per unit area at distance R in a given direction, W_{inc} is the power per unit area of the incident plane wave, and the primes on the electric fields specify the fields used in the program as defined above. For the case of a Hertzian dipole used as a source, the gain equations are used; however, P_{in} is equal to the total power radiated by the Hertzian source. That is

$$P_{in} = \frac{\pi\eta}{3} \left| \frac{I\ell}{\lambda} \right|^2$$

where the quantity IL is an input quantity.

(6) Elliptic Polarization

Elliptic polarization parameters are calculated as follows:

,

$$M = \left[\left(E_{ym} \cos \gamma + E_{zm} \cos \xi \sin \gamma\right)^2 + E_{zm}^2 \sin^2 \xi \sin^2 \gamma\right]^{1/2},$$
$$N = \left[E_{ym} \sin \gamma - E_{zm} \cos \xi \cos \gamma\right]^2 + E_{zm}^2 \sin^2 \xi \cos^2 \gamma\right]^{1/2},$$

where

$$E_{y} = E_{ym} \exp[j(\omega t - kx)] ,$$
$$E_{z} = E_{zm} \exp[j(\omega t - kx + \xi)] ,$$

and γ is given by

$$\tan 2y = \frac{2E \sum_{ym} E \cos \xi}{E_{ym}^2 - E_{zm}^2}$$

In this routine, the coordinates y and z above are replaced by θ and ϕ , respectively.

The field is computed by FFLD at RD74 for space wave or by GFLD at RD76 for space and ground wave. Elliptic polarization parameters are computed from RD87 to RD118. RD127 to RD137 stores gain in the array GAIN for normalization. The integral of radiated power for the average gain calculation is summed at RD140 to RD147. Fields and gain are printed at RD162 for space wave or RD165 for ground wave. Average gain is computed and printed from RD168 to RD173. Normalized gain is printed from RD174 to RD208.

SYMBOL DICTIONARY

AXRAT	= N/M (elliptic axial ratio)
CHT	= height of cliff in meters
CLT	= distance in meters of cliff edge from origin
DA	= element of solid angle for average gain summation
DFAZ	= phase difference between ${ t E}_{ heta}$ and ${ t E}_{m \phi}$ for elliptic
	polarization

D PH	= increment for ϕ
DTH	= increment for θ
EMAJR2	$= M^2$ (M = major axis)
EMINR2	$= N^2$
E PH	= ${ extsf{E}}_{m{\Phi}}$ (phi component of electric field, with or
	without the term $exp(-jkR)/(R/\lambda)$ depending on return
	from GFLD or FFLD)
EPHA	= phase angle of EPH
e phm	= EPH
EPHM2	$= EPH ^2$
EPSR	= relative dielectric constant
EPSR2	= relative dielectric constant of second medium
ERD	= radial electric field for ground wave
E RDA	= phase of ERD
ERDM	= IERDI
ЕТН	= ε _θ
ETHA	= phase of E ₀
ETHM	= IE ^O I
ETHM2	$= 1 E_{\Theta} 1^2$
EXRA	= phase of exp(-jkR)
EXRM	= 1/R
GCON	= factor multiplying $ E ^2$ to yield gain or σ/λ^2
GCOP	= GCON except when GCON yields directive gain; then GCOP
	remains power gain
GMAX	= value used for normalized gain
GNH	= horizontal gain in decibels, φ component
GNMJ	= major axis gain in decibels
GNMN	= minor axis gain in decibels
GNOR	= if non-zero, equals input gain quantity
GNV	= vertical gain (θ)
GTO T	= total gain
LAVP	= flag for average gain
IAX	= flag for gain type
I FAR	= first integer from RP card

.

INOR	= integer to select normalized gain
E PD	= flag to select power or directive gain
ΙΧΊΥΡ	= excitation type
NORMAX	= dimension of FNORM (maximum number of gain values that
	will be stored for normalization)
NPH	= number of ϕ values
NTH	= number of θ values
РНА	= φ in radians
PHI	= \$\phi\$ in degrees
PHIS	= initial φ
ΡI	= π
PINR	= input power for current element source
PINT	= summation variable for average gain
PLOSS	= power dissipated in structure loads
PNLR	= power dissipated in networks and transmission lines
PRAD	= power radiated by the antenna
RFLD	= if non-zero, equal to the observation distance in meters
SIG	= conductivity of ground (mhos/m)
SIG2	= conductivity of second medium (mhos/m)
STILTA	= sin γ; γ is tilt angle of the polarization ellipse
ТА	$= \pi/180$
TD	$= 180/\pi$
THA	= θ in radians
THET	= θ in degrees
THETS	= initial θ
TILTA	= γ (tilt angle of ellipse)
XPR6	= minor axis of polarization ellipse or strength of
	current element source

CONSTANTS

.

1.745329252E-2	=	π/180			
1.E-20	=	small	value	test	

1.E-5	= small value test
-1.E10	= near minus infinity
3.141592654	≕ π
376.73	$= n_0 = \sqrt{\mu_0 / \epsilon_0}$
394.51	$= \pi \eta_0 / 3$
57.2957795	$= 180/\pi$
59.96	$= n_0/(2\pi)$
90.01	= test value for angle exceeding 90 degrees

1		SUBROUTINE RDPAT	00	
2	С	COMPUTE RADIATION PATTERN, GAIN, NORMALIZED GAIN	RD RD	1 2
3		INTEGER HPOL, HBLK, HCIR, HCLIF	RD	3
4		COMPLEX ETH, EPH, ERD, ZRATI, ZRATI2, T1, FRATI	RD	4
5		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	RD	5
6		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(RD	6
7		2300),WLAM, IPSYM	RD	7
8		COMMON /SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ	RD	8
9		COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR,		9
10		1IPERF,T1,T2 COMMON /FPAT/ NTH,NPH,IPD,IAVP,INOR,IAX,THETS,PHIS,DTH,DPH,RFLD,GN	RD	10
11 12		10R, CLT, CHT, EPSR2, SIG2, IXTYP, XPR6, PINR, PNLR, PLOSS, NEAR, NFEH, NRX, NRY		11
13		2, NRZ, XNR, YNR, ZNR, DXNR, DXNR, DYNR, DZNR	RD	12
14		COMMON /SCRATM/ GAIN(1200)	RD	13 14
15		DIMENSION IGTP(4), IGAX(4), IGNTP(10), HPOL(3)	RD	15
16		DATA HPOL/6HLINEAR, 5HRIGHT, 4HLEFT/, HBLK, HCIR/1H, 6HCIRCLE/	RD	16
17		DATA IGTP/6H - ,6HPOWER ,6H- DIRE,6HCTIVE /	RD	17
18		DATA IGAX/6H MAJOR,6H MINOR,6H VERT.,6H HOR. /	RD	18
19		DATA IGNTP/6H MAJOR,6H AXIS ,6H MINOR,6H AXIS ,6H VER,6HTICAL ,6	RD	19
20		1H HORIZ, 6HONTAL, 6H , 6HTOTAL /	RD	20
21		DATA PI, TA, TD/3.141592654, 1.745329252E-02, 57.29577951/	RD	21
22		DATA NORMAX/1200/	RD	22
23 24		IF (IFAR.LT.2) GO TO 2	RD	23
25		PRINT 35 IF (IFAR.LE.3) GO TO 1	RD RD	24 25
26		PRINT 36, NRADL, SCRWLT, SCRWRT	RD	26
27		IF (IFAR.EQ.4) GO TO 2	RD	27
28	1	IF (IFAR.EQ.2.OR.IFAR.EQ.5) HCLIF=HPOL(1)	RD	28
29		IF (IFAR.EQ.3.OR.IFAR.EQ.6) HCLIF=HCIR	RD	29
30		CL=CLT/WLAM	RD	30
31		CH=CHT/WLAM	RD	31
32		ZRATI2=CSQRT(1./CMPLX(EPSR2,-SIG2*WLAM*59.96))	RD	32
33		PRINT 37, HCLIF, CLT, CHT, EPSR2, SIG2	RD	33
34	2	IF (IFAR.NE.1) GO TO 3	RD	34
35		PRINT 41	RD	35
36		GO TO 5	RD	36
37	3	I=2*IPD+1	RD	37
38 39		J=I+1 ITMP1=2*IAX+1	RD RD	38 39
40		ITMP1=2*IXAFT	RD	40
41		PRINT 38	RD	41
42		IF (RFLD.LT.1.E-20) GO TO 4	RD	42
43		EXRM=1./RFLD	RD	43
44		EXRA=RFLD/WLAM	RD	44
45		EXRA=-360.*(EXRA-AINT(EXRA))	RD	45
46		PRINT 39, RFLD, EXRM, EXRA	RD	46
47		<pre>PRINT 40, IGTP(I),IGTP(J),IGAX(ITMP1),IGAX(ITMP2)</pre>	RD	47
48		IF (IXTYP.EQ.O.OR.IXTYP.EQ.5) GO TO 7	RD	48
49		IF (IXTYP.EQ.4) GO TO 6	RD RD	49 50
50 51		PRAD=0. GCON=4.*PI/(1.+XPR6*XPR6)	RD	51
52		GCOP=GCON	RD	52
53		GO TO B	RD	53
54		PINR=394.51*XPR6*XPR6*WLAM*WLAM	RD	54
55		GCOP=WLAM*WLAM*2.*PI/(376.73*PINR)	RD	55
56		PRAD=PINR-PLOSS-PNLR	RD	56
57		GCON=GCOP	RD	57
58		IF (IPD.NE.O) GCON=GCON•PINR/PRAD	RÐ	58
59		I=0	RD	59
60		GMAX=-1.E10	RD	60
61			RD	61
62 63		TMP1=DPH+TA TMP2=,5+DTH+TA	RD RD	62 63
64		PHI=PHIS-DPH	RD	64
0.4				

6F		
65	DO 29 KPH=1,NPH	RD 65
66	PHI=PHI+DPH	RD 66
67	РНА≃РНІ+ТА	
68	THET=THETS-OTH	
69	DO 29 KTH=1,NTH	RD 68
70	THET=THET+DTH	RD 69
71		RD 70
72	IF (KSYMP.EQ.2.AND.THET.GT.90.01.AND.IFAR.NE.1) GO TO 29	RD 71
	THA=THET*TA	RD 72
73	IF (IFAR.EQ.1) GO TO 9	RD 73
74	CALL FFLD (THA, PHA, ETH, EPH)	RD 74
75	GO TO 10	
76 9	CALL GFLD (RFLD/WLAM, PHA, THET/WLAM, ETH, EPH, ERD, ZRATI, KSYMP)	
77	ERDM=CABS(ERD)	RD 76
78	ERDA=CANG(ERD)	RD 77
79 10	ETHM2=REAL(ETH+CONJG(ETH))	RD 78
80	ETHM2-ACAL(ETHCONJG(ETH))	RD 79
	ETHM=SQRT(ETHM2)	RD 80
81	ETHA=CANG(ETH)	RD 81
82	EPHM2=REAL(EPH*CONJG(EPH))	RD 82
83	EPHM=SQRT(EPHM2)	RD 83
84	EPHA=CANG(EPH)	
85	IF (IFAR.EQ.1) GO TO 28	RD 84
86 C	ELLIPTICAL POLARIZATION CALC.	RD 85
87	IF (ETHM2.GT.1.E-20.OR.EPHM2.GT.1.E-20) GO TO 11	RD 86
88	TILTA=0.	RD 87
89		RD 88
	EMA JR2=0.	RD 89
90	EMINR2=0.	RD 90
91	AXRAT=0.	RD 91
92	ISENS=HBLK	RD 92
93	GO TO 16	RD 93
94 11	DFAZ=EPHA-ETHA	
95	IF (EPHA.LT.O.) GO TO 12	RD 94
96	DFAZ2=DFAZ-360.	RD 95
97	GO TO 13	RD 96
98 12	DFAZ2=DFAZ+360.	RD 97
99 13		RD 98
	IF (ABS(DFAZ).GT.ABS(DFAZ2)) DFAZ=DFAZ2	RD 99
100	CDFAZ=COS(DFAZ*TA)	RD 100
101	TSTOR1=ETHM2-EPHM2	RD 101
102	TSTOR2=2.*EPHM*ETHM*CDFAZ	RD 102
103	TILTA=.5*ATGN2(TSTOR2,TSTOR1)	RD 103
104	STILTA=SIN(TILTA)	
105	TSTOR1=TSTOR1*STILTA*STILTA	RD 104
106	TSTOR2=TSTOR2*STILTA*COS(TILTA)	RD 105
107	EMAJR2=-TSTOR1+TSTOR2+ETHM2	RD 106
108	EMINR2=TSTOR1-TSTOR2+EPHM2	RD 107
109	$TE \left(FMTND2 + T + 0 \right) FMTND2 + 0$	RD 108
	IF (EMINR2.LT.O.) EMINR2=0.	RD 109
110	AXRAT=SQRT(EMINR2/EMAJR2)	RD 110
111	TILTA=TILTA*TD	RD 111
112	IF (AXRAT.GT.1.E-5) GO TO 14	RD 112
113	ISENS=HPOL(1)	RD 113
114	GO TO 16	
115 14	IF (DFAZ.GT.O.) GO TO 15	RD 114
116	ISENS=HPOL(2)	RD 115
117	GO TO 16	RD 116
118 15	ISENS=HPOL(3)	RD 117
119 16	GNMJ=DB10(GCON+EMAJR2)	RD 118
120		RD 119
	GNMN=DB10(GCON+EMINR2)	RD 120
121	GNV=DB10(GCON*ETHM2)	RD 121
122	GNH=DB10(GCON*EPHM2)	RD 122
123	GTOT=DB10(GCON*(ETHM2+EPHM2))	RD 123
124	IF (INOR.LT.1) GO TO 23.	
125	I=I+1	RD 124
126	IF (I.GT.NORMAX) GO TO 23	RD 125
127	GO TO (17,18,19,20,21), INOR	RD 126
128 17	TSTORIEGNMJ	RD 127
		RD 128

129		GO TO 22		
130	18	TSTOR1=GNMN	RD	129
131		GO TO 22		130
132	19	TSTOR1=GNV		131
133		GO TO 22		132
134	20	TSTOR1=GNH		133
135		GO TO 22		134
136	21	TSTOR1=GTOT		135
137	22	GAIN(I)=TSTOR1		136 137
138		IF (TSTOR1.GT.GMAX) GMAX=TSTOR1		138
139	23	IF (IAVP.EQ.0) GO TO 24		139
140		TSTOR1=GCOP*(ETHM2+EPHM2)		140
141		TMP3=THA-TMP2		141
142		TMP4=THA+TMP2		142
143		IF (KTH.EQ.1) TMP3=THA		143
144		IF (KTH.EQ.NTH) TMP4=THA		144
145		DA=ABS(TMP1+(COS(TMP3)-COS(TMP4)))	RD	145
146 147		IF (KPH.EQ.1.OR.KPH.EQ.NPH) DA=.5*DA	RD	146
147		PINT=PINT+TSTORI+DA	RD	147
149	24	IF (IAVP.EQ.2) GO TO 29 IF (IAX.EQ.1) GO TO 25	RD	148
150	£.7	TMP5=GNMJ		149
151		TMP6=GNMN		150
152		GO TO 26		151
153	25	TMP5=GNV		152
154		TMP6=GNH		153
155	26	ETHM=ETHM•WLAM		154
156		EPHM=EPHM+WLAM		155
157		IF (RFLD.LT.1.E-20) GO TO 27		156 157
158		ETHM=ETHM+EXRM		158
159		ETHA=ETHA+EXRA		159
160		EPHM=EPHM*EXRM		160
161		EPHA=EPHA+EXRA	RD	161
162	27	PRINT 42. THET, PHI, TMP5. TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM	RD	162
163		1,ЕРНА		163
164		GO TO 29	RD	164
165		PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA		165
166	29	CONTINUE	RD	166
167		IF (IAVP.EQ.O) GO TO 30	RD	167
168		TMP3=THETS+TA	RD	168
169 170		TMP4=TMP3+DTH+TA+FLOAT(NTH-1)	RD	169
171		TMP3=ABS(DPH+TA+FLOAT(NPH-1)+(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3	RD	
172		TMP3=TMP3/PI	RD	
173		PRINT 44, PINT, TMP3	RD	
174	30	IF (INOR EQ.0) GO TO 34	RD	
175		IF $(ABS(GNOR), GT, I, E-20)$ GMAX=GNOR	RD	
176		ITMP1=(INOR-1)*2+1	RD RD	
177		ITMP2=ITMP1+1	RD	
178		PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX	RD	
179		JTMP2=NPH*NTH	RD	
180		IF (ITMP2.GT.NORMAX) ITMP2=NORMAX	RD	
181		ITMP1=(ITMP2+2)/3	RD	
182		LTMP2=ITMP1*3-ITMP2	RD	
183		ITMP3=ITMP1	RD	
184		ITMP4=2+1TMP1	RD	184
185		IF (ITMP2.EQ.2) LIMP4=ITMP4-1	RD	185
186 187			RD	
188		ITMP3+([MP3+1 ITMP4=LTMP4+1	RD	
189		J = (I - 1) / NTH	RD	
190		TMP1=THFTS+FLOAT(I=+*NTH=1)*DTH	RD	
191		TMP2=FHIS+FLOAT(J)+OPH	RD	
192		J=(ITMP3-1)/NTH	RD RD	
			ΛU	. 3 2

193	TMP3=THETS+FLOAT(ITMP3-J•NTH-1)•DTH	RÐ	193
194	TMP4=PHIS+FLOAT(J) • DPH	RD	194
195	J=(ITMP4-1)/NTH	RD	195
196	TMP5=THETS+FLOAT(ITMP4-J•NTH-1)•DTH	RD	196
197	TMP6=PHIS+FLOAT(J) • DPH	RD	197
198	TSTOR1=GAIN(I)-GMAX	RD	198
199	IF (I.EQ.ITMP1.AND.ITMP2.NE.O) GO TO 32	RD	199
200	TSTOR2=GAIN(ITMP3)-GMAX	RD	200
201	PINT=GAIN(IIMP4)-GMAX	RD	201
202 31	PRINT 46, TMP1,TMP2,TSTOR1,TMP3,TMP4,TSTOR2,TMP5,TMP6,PINT	RD	202
203	GO TO 34	RD	203
204 32	IF (ITMP2.EQ.2) GO TO 33	RD	204
205	TSTOR2=GAIN(ITMP3)-GMAX	RD	205
206	PRINT 46, TMP1,TMP2,TSTOR1,TMP3,TMP4,TSTOR2	RD	206
207	GO TO 34	RD	207
208 33	PRINT 46, TMP1, TMP2, TSTOR1		208
209 34	RETURN		209
210 C			210
211 35	FORMAT (///,31X,39H FAR FIELD GROUND PARAMETERS,//)		211
212 36	FORMAT (40X,25HRADIAL WIRE GROUND SCREEN,/,40X,15,6H WIRES,/,40X,1	RD	212
213	12HWIRE LENGTH=, F8.2, 7H METERS, /, 40X, 12HWIRE RADIUS=, E10.3, 7H METER	RD	213
214	2S)		213
215 37	FORMAT (40X,A6,6H CLIFF,/,40X,14HEDGE DISTANCE=,F9.2,7H METERS,/,4		
216	10X,7HHEIGHT=,F8.2,7H METERS,/,40X,15HSECOND MEDIUM -,/,40X,27HRELA	RD	216
217	2TIVE DIELECTRIC CONST.=,F7.3,/,40X,13HCONDUCTIVITY=,E10.3,5H MHOS)		210
218 38	FORMAT $(///, 48X, 30H RADIATION PATTERNS)$		218
219 39	FORMAT (54X,6HRANGE=,E13.6,7H METERS,/,54X,12HEXP(-JKR)/R=,E12.5,9	к <i>0</i> ро	210
220	1H AT PHASE, F7.2, 8H DEGREES,/)		219
221 40	FORMAT (/,2X,14H ANGLES,7X,2A6,7HGAINS -,7X,24H POLARI		
222	1ZATION, 4X, 20H E(THETA), 4X, 16H E(PHI), 2H		
223	2/.2X.5HTHETA.5X.3HPHI.7X.A6.2X.A6.3X.5HTOTAL.6X.5HAXIAL.5X.4HTIL		222
224	3T.3X.5HSENSE.2(5X.9HMAGNITUDE.4X.6HPHASE)./.2(1X.7HDEGREES.1X).3(
225	46X,2HDB),8X,5HRATIO,5X,4HDEG.,8X,2(6X,7HVOLTS/M,4X,7HDEGREES))		224
226 41	FORMAT (///.28X.40H RADIATED FIELDS NEAR GROUND//.8X.		225
227	$120H_{} = 100000000000000000000000000000000000$	RU	226
228	120H LOCATION, 10X, 16H E(THETA), 8X, 14H E(PHI), 8X, 14H E(PHI), 8X, 14H E(PHI), 8X, 14H E(PHI), 8X, 14H, 8X, 14H	кU an	227
229	2 -, 8X, 17H E(RADIAL), /, 7X, 3HRHO, 6X, 3HPHI, 9X, 1HZ, 12X, 3HMAG, 6X	RD	
	3,5HPHASE,9X,3HMAG,6X,5HPHASE,9X,3HMAG,6X,5HPHASE,/,5X,6HMETERS,3X,	RD	229
230	47HDEGREES, 4X, 6HMETERS, 8X, 7HVOLTS/M, 3X, 7HDEGREES, 6X, 7HVOLTS/M, 3X, 7H		
231	5DEGREES, 6X, 7HVOLTS/M, 3X, 7HDEGREES, /)		231
232 42	FORMAT (1X, F7.2, F9.2, 3X, 3F8.2, F11.5, F9.2, 2X, A6, 2(E15.5, F9.2))		232
233 43	FORMAT (3X, F9.2, 2X, F7.2, 2X, F9.2, 1X, 3(3X, E11.4, 2X, F7.2))		233
234 44	FORMAT (//.3X.19HAVERAGE POWER GAIN=,E12.5.7X, 31HSOLID ANGLE USED	RD	234
235	1 IN AVERAGING=(,F7.4,16H) PI STERADIANS.,//)		235
236 45	FORMAT (//, 37X, 31H NORMALIZED GAIN,//, 37X, 2A6, 4HGAI	RD	236
237	1N,/,38X,22HNORMALIZATION FACTOR =, F9.2, 3H DB,//,3(4X,14H ANGLES	RD	237
238	26X,4HGAIN,7X),/,3(4X,5HTHETA,5X,3HPHI,8X,2HDB,8X),/,3(3X,7HDE	RD	238
239	3GREES, 2X, 7HDEGREES, 16X))	RD	239
240 46	FORMAT (3(1X,2F9.2,1X,F9.2,6X))	RD	240
241	END	RD	241-

REBLK

PURPOSE

To read the matrix B by blocks of rows and write it by blocks of columns.

METHOD

When LCASX is 3 or 4 subroutine CMNGF writes B to file 14 by blocks of rows. Filling B by rows is convenient since the field of a single segment may contribute to several columns. However, blocks of columns are needed when $A^{-1}B$ is computed. Hence the format is converted.

NBBX is the number of block of B stored by rows and NBBL is the number of blocks stored by columns. The loop from RB16 to RB23 reads file 14 and stores the elements for block NPB of columns. This process is repeated for each of the NBBL blocks of columns.

SYMBOL DICTIONARY

В	= array for blocks of columns of B
ВΧ	= array for blocks of rows of B
N2C	= number of columns in B
NB	= number of rows in B
NBX	= number of rows in blocks of rows of B (NPBX)
NPB	= number of columns in blocks of columns (NPBL or NLBL for last
	block)
NPX	= NPBX or NLBX for last block of rows

REBLK

1		SUBROUTINE REBLK (0,8X,N0,N8X,N2C)	RÐ	1
2	С	REBLOCK ARRAY B IN N.G.F. SOLUTION FROM BLOCKS OF ROWS ON TAPE14	RB	1
3	С	TO BLOCKS OF COLUMNS ON TAPE16	RB	3
4		COMPLEX B, BX	RB	4
5		COMMON /MATPAR/ ICASE.NBLOKS.NPBLK.NLAST.NBLSYM.NPSYM.NLSYM.IMAT.I	RB	5
6		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	RB	6
7		DIMENSION B(NB,1), BX(NBX,1)	RB	7
8		REWIND 16	RB	8
9		NIB=0	RB	9
10		NP8=NP8L	RB	10
11		DO 3 IB=1,NBBL	RB	11
12		IF (IB.EQ.NBBL) NPB=NLBL	RB	12
13		REWIND 14	RB	13
14		NIX=0	RB	14
15		NPX=NPBX	RB	15
16		DO 2 IBX=1,NBBX	RB	16
17		IF (IBX.EQ.NBBX) NPX=NLBX	RB	17
18		READ (14) ((BX(I,J),I=1,NPX),J≍1,N2C)	RB	18
19		DO 1 I=1,NPX	RB	19
20		IX=I+NIX	RB	20
21		DO 1 J=1,NPB	RB	21
22	1	B(IX,J)=BX(I,J+NIB)	RB	22
23	2	NIX=NIX+NP8X	RB	23
24		WRITE (16) ((B(I,J),I=1,NB),J=1,NPB)	RB	24
25	3	NIB=NIB+NPBL	RĐ	25
26		REWIND 14	RB	26
27		REWIND 16	RB	27
28		RETURN	RB	28
29		END	RB	29-

.

PURPOSE

To generate geometry data for structures having plane or cylindrical symmetry by forming symmetric images of a previously defined structure unit.

METHOD

The first part of the code, from statement RE20 to RE153, forms plane symmetric structures by reflecting segments and patches in the coordinate The reflection planes are selected by the formal parameters IX, IY, planes. and IZ. If IZ is greater than zero, an image of the existing segments and patches is formed by reflection in the x-y plane, which will be called reflection along the z axis. Next, if IY is greater than zero, an image of the existing segments and patches, including those generated in the previous step by reflection along the z axis, is formed by reflection along the y axis. Finally, if IX is greater than zero, an image of all segments and patches, including any previously formed by reflection along the z and y axes, is formed by reflection along the x axis. Any combination of zero and non-zero values of IX, IY, and IZ may be used to generate structures with one, two. or three planes of symmetry. Tag numbers of image segments are incremented by ITX from tags of the original segments, except that tags of zero are not incremented. After each reflection in a coordinate plane, ITX is doubled. Thus, if ITX is initially greater than the largest tag of the existing segments, no duplicate tags will be formed by reflection in one, two, or three planes.

The code from RE157 to RE204 forms cylindrically symmetric structures by forming images of previously defined segments and patches rotated about the z axis. The number of images, including the original structure, is selected by NOP in the formal parameters. The angle by which each image is rotated about the z axis from the previous image is computed as $2\pi/NOP$, so that the images are uniformly distributed about the z axis. Tag numbers of segments are incremented by ITX, except that tags of zero are not incremented.

When REFLC is used to form structures with either plane or cylindrical symmetry, the data in COMMON/DATA/ is set so that the program will take advantage of symmetry in filling and factoring the matrix. This is done by setting N equal to the total number of segments but leaving NP equal to the number of segments in the original structure unit that was reflected or

-299-

rotated. The symmetry flag IPSYM is also set to indicate the type of symmetry: positive values indicating plane symmetry and negative values cylindrical symmetry. These symmetry conditions may later be changed if the structure is modified in such a way that symmetry is destroyed.

SYMBOL DICTIONARY

ABS	= external routine (absolute value)
COS	= external routine (cosine)
CS	= cos $(2\pi/NOP)$
El	= segment coordinate (temporary storage)
E2	= segment coordinate (temporary storage)
FNOP	= NOP
1	= DO loop index
ITAGI	= segment tag (temporary storage)
ITI	= segment tag increment
ITX	= segment tag increment
IX	= flag for reflection along x axis
IY	= flag for reflection along y axis
IZ	<pre>= flag for reflection along z axis</pre>
J	= array location for new patch data
К	= segment index and array location for old patch data
NOP	= number of sections in cylindrically symmetric structure
NX	= segment index and array location for new patch data
NNX	= array location for old patch
SAM	$= 2\pi/NOP$
SIN	= external routine (sine)
SS	$= \sin (2\pi/NOP)$
TIX	
Τ1Υ	
T1Z	= x, y, z components of \hat{t}_1 and \hat{t}_2
T2X	1 2
T2Y	
t2Z J	
XK	= x coordinate of segment
X2(I)	= x coordinate of end two of segment I
YK	= y coordinate of segment

Y2(I) = y coordinate of end two of segment I Z2(I) = z coordinate of end two of segment I

CONSTANTS

1.E-6 = tolerance in test for zero 1.E-5 = tolerance in test for zero 6.283185308 = 2π

.

٤	SUBROUTINE REFLC (IX, IY, IZ, ITX, NOP)	RE	1
	C	RE	2
	C REFLC REFLECTS PARTIAL STRUCTURE ALONG X.Y. OR Z AXES OR ROTATES	S RE	3
	C STRUCTURE TO COMPLETE A SYMMETRIC STRUCTURE.	RE	4
	C	RE	5
6	COMMON /DATA/ LD.N1.N2.N.NP.M1.M2.M.MP.X(300),Y(300),Z(300),SI(300 RE	6
7	1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICO	NX(RE	7
8	2300), WLAM, IPSYM	RE	8
9	COMMON /ANGL/ SALP(300)	RE	9
10	DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1), X2(1)	, Y RE	10
11	12(1), Z2(1)	RE	11
12	EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,I		12
13	12), (T2Z,ITAG), (X2,SI), (Y2,ALP), (Z2,BET)	RE	13
14		RE	14
15		RE	15
16	IPSYM=0	RE	16
17 18	III=IIX	RE	17
19	IF (IX.LT.O) GO TO 19 IF (NOP.EQ.O) RETURN	RE	18
20	· ·	RE	19
21	IF (IZ.EQ.0) GO TO 6	RE RE	20 21
22		RE	22
23		RE	23
24		RE	24
25	IPSYM=2	RE	25
26	IF (N.LT.N2) GO TO 3	RE	26
27		RE	27
28	NX=I+N-N1	RE	28
29	E1=Z(I)	RE	29
30	E2=Z2(I)	RE	30
31	IF (ABS(E1)+ABS(E2).GT.1.E-5.AND.E1*E2.GE1.E-6) GO TO 1	RE	31
32	PRINT 24. I	RE	32
33		ŔĔ	33
34		RE	34
35		RE	35
36		RE	36
37		RE	37
38		RE	38
39		RE	39
40		RE	40
41 42		RE RF	41
42		RE	42 43
44		RE	43
45		RE	45
46		RE	46
47		RE	4
48		RE	48
49	NXX=NXX-1	RE	49
50	NX=NXX-M+M1	RE	50
51	IF (ABS(Z(NXX)).GT.1.E-10) GO TO 4	RE	51
52		RE	52
53		RE	53
54		RE	54
55		RE	55
56		RE	56
57		RE	57 50
58 59		RE	58 50
59 60		RE RE	59 80
61		RE	61
62		RE.	52
63		RE	63
	5 BI(NX)=BI(NXX)	RE	64

```
65
           M=M*2-M1
                                                                                      RE
                                                                                          65
66 6
           IF (IY.EQ.0) GO TO 12
                                                                                      RE
                                                                                          66
67 C
                                                                                      RF
                                                                                          67
68 C
           REFLECT ALONG Y AXIS
                                                                                      RE
                                                                                          68
69 C
                                                                                      RE
                                                                                          69
70
           IF (N.LT.N2) GO TO 9
                                                                                      RE
                                                                                          70
71
           DO 8 I=N2.N
                                                                                      RE
                                                                                          71
72
           NX=I+N-N1
                                                                                      RE
                                                                                          72
73
           E1=Y(I)
                                                                                      RE
                                                                                          73
74
           E2=Y2(I)
                                                                                      RE
                                                                                          74
75
           IF (ABS(E1)+ABS(E2).GT.1.E-5.AND.E1*E2.GE.-1.E-6) GO TO 7
                                                                                          75
                                                                                      RE
76
           PRINT 24. I
                                                                                      RE
                                                                                          76
77
           STOP
                                                                                      RE
                                                                                          77
78 7
           X(NX)=X(I)
                                                                                      RE
                                                                                          78
79
           Y(NX) = -E1
                                                                                      RF
                                                                                          79
80
           Z(NX)=Z(I)
                                                                                      RE
                                                                                          80
81
           X2(NX)=X2(I)
                                                                                      RE
                                                                                          81
           Y2(NX) = -E2
82
                                                                                      RΕ
                                                                                          82
83
           Z2(NX)=Z2(I)
                                                                                      RE
                                                                                          83
84
           ITAGI=ITAG(I)
                                                                                      RE
                                                                                          84
85
           IF (ITAGI.EQ.0) ITAG(NX)=0
                                                                                      RE
                                                                                          85
           IF (ITAGI.NE.O) ITAG(NX)=ITAGI+ITI
86
                                                                                      RE
                                                                                          86
87 8
           BI(NX)=BI(I)
                                                                                      RE
                                                                                          87
88
           N=N+2-N1
                                                                                      RE
                                                                                          88
89
           ITT=ITI+2
                                                                                      RE
                                                                                          89
90 9
           IF (M.LT.M2) GO TO 12
                                                                                      RE
                                                                                          90
91
           NXX=LD+1-M1
                                                                                      R£
                                                                                          91
92
           DO 11 I≃M2,M
                                                                                      RE
                                                                                          92
93
           NXX=NXX-1
                                                                                      RE
                                                                                          93
94
           NX=NXX-M+M1
                                                                                      RE
                                                                                          94
95
           IF (ABS(Y(NXX)).GT.1.E-10) GO TO 10
                                                                                      RE
                                                                                          95
96
           PRINT 25, I
                                                                                      RE
                                                                                          96
97
           STOP
                                                                                      RE
                                                                                          97
98 10
           X(NX) = X(NXX)
                                                                                      RE
                                                                                          98
99
           Y(NX) = -Y(NXX)
                                                                                          99
                                                                                      RE
100
           Z(NX) = Z(NXX)
                                                                                      RE 100
101
           T1X(NX) = T1X(NXX)
                                                                                      RE 101
102
           T1Y(NX) = -T1Y(NXX)
                                                                                      RE 102
103
           T1Z(NX) = T1Z(NXX)
                                                                                      RE 103
104
           T2X(NX) = T2X(NXX)
                                                                                      RE 104
105
           T2Y(NX) = T2Y(NXX)
                                                                                      RE 105
106
           T2Z(NX)=T2Z(NXX)
                                                                                      RE 106
107
           SALP(NX)=-SALP(NXX)
                                                                                      RE 107
108 11
           BI(NX)=BI(NXX)
                                                                                      RE 108
109
           M=M*2-M1
                                                                                      RE 109
110 12
           IF (IX.EQ.0) GO TO 18
                                                                                      RE 110
111 C
                                                                                      RE 111
112 C
           REFLECT ALONG X AXIS
                                                                                      RE 112
113 C
                                                                                      RE 113
114
           IF (N.LT.N2) GO TO 15
                                                                                      RE 114
115
           DO 14 I=N2.N
                                                                                      RE 115
116
           NX=I+N-N1
                                                                                      RE 116
117
           E1=X(I)
                                                                                      RE 117
118
           E2 = X2(I)
                                                                                      RE 118
119
           IF (ABS(E1)+ABS(E2).GT.1.E-5.AND.E1*E2.GE.-1.E-6) GO TO 13
                                                                                      RE 119
120
           PRINT 24, I
                                                                                      RE 120
121
           STOP
                                                                                      RE 121
           X(NX) = -E1
122 13
                                                                                      RE 122
123
           Y(NX)=Y(I)
                                                                                      RE 123
124
           Z(NX)=Z(I)
                                                                                      RE 124
125
           X2(NX) = -E2
                                                                                      RE
                                                                                          25
126
           Y2(NX)=Y2(I)
                                                                                      RE 126
127
           Z2(NX)=Z2(I)
                                                                                      RE 127
128
           ITAGI=ITAG(I)
                                                                                      RE 128
```

129	IF (ITAGI.EQ.O) ITAG(NX)=0	RE 129
130	IF (ITAGI.NE.O) ITAG(NX)=ITAGI+ITI	
		RE 130
131 14	BI(NX)=BI(I)	RE 131
132	N=N+2-N1	RE 132
133 15	IF (M.LT.M2) GO TO 18	
		RE 133
134	NXX=LD+1~M1	RE 134
135	DO 17 I=M2,M	RE 135
136	NXX=NXX-1	RE 136
137	NX=NXX-M+M1	RE 137
138	IF (ABS(X(NXX)).GT.1.E-10) GO TO 16	RE 138
139	PRINT 25, I	RE 139
140	STOP	RE 140
141 16	X(NX) = -X(NXX)	RE 141
142	Y(NX)=Y(NXX)	RE 142
143	Z(NX) = Z(NXX)	RE 143
144	T1X(NX) = -T1X(NXX)	RE 144
145	T1Y(NX)=T1Y(NXX)	RE 145
146	$T_1Z(NX) = T_1Z(NXX)$	RE 146
147	T2X(NX) = -T2X(NXX)	RE 147
148	T2Y(NX)=T2Y(NXX)	RE 148
149	T2Z(NX)=T2Z(NXX)	RE 149
150	SALP(NX) = -SALP(NXX)	RE 150
151 17	BI(NX)=BI(NXX)	RE 151
152	M=M*2-M1	RE 152
153 18	RETURN	
	RETORN	RE 153
154 C		RE 154
155 C	REPRODUCE STRUCTURE WITH ROTATION TO FORM CYLINDRICAL STRUCTURE	RE 155
156 C		RE 156
157 19	FNOP=NOP	RE 157
158	IPSYM=-1	RE 158
159	SAM=6.283185308/FNOP	RE 159
160	CS=COS(SAM)	RE 160
161	SS=SIN(SAM)	RE 161
162	IF (N.LT.N2) GO TO 21	RE 162
163	N=N1+(N-N1) •NOP	RE 163
164	NX=NP+1	RE 164
165	DO 20 I=NX,N	RE 165
166	K=I-NP+N1	RE 166
167	хк=х(к)	RE 167
168	YK=Y(K)	RE 168
169	X(I)=XK*CS-YK*SS	RE 169
170	Y(I)=XK*SS+YK*CS	RE 170
171	Z(I)=Z(K)	RE 171
172	XK=X2(K)	RE 172
173	YK=Y2(K)	RE 173
174	X2(I)=XK*CS-YK*SS	RE 174
175	Y2(I)=XK*SS+YK*CS	RE 175
176	Z2(I)=Z2(K)	RE 176
177	ITAGI=ITAG(K)	RE 177
178	IF (ITAGI.EQ.0) ITAG(I)=0	RE 178
179	IF (ITAGI.NE.O) ITAG(I)=ITAGI+ITI	RE 179
180 20	BI(I)=BI(K)	RE 180
181 21	IF (M.LT.M2) GO TO 23	RE 181
182	M=M1+(M-M1)*NOP	RE 182
183	NX=MP+1	RE 183
184	K=LD+1-M1	RE 184
185	DO 22 I=NX.M	RE 185
	•	
186	K=K-1	RE 186
187	J=K-MP+N1	RE 187
188	XK=X(K)	RE 188
	• •	
189	YK=Y(K)	RE 189
190	X(J)=XK+CS-YK+SS	RE 190
191	Y(J)=XK*SS+YK*CS	RE 191
192	Z(J) = Z(K)	RE 192

193		XK=T1X(K)		
194		YK = T I Y (K)	RE	193
195		T1X(J)=XK*CS-YK*SS	RE	194
196		11/(2) + 20 + 10 + 20	RE	195
197		T1Y(J)=XK*SS+YK*CS	RE	196
		T1Z(J)=T1Z(K)	RE	197
198		XK=T2X(K)		198
199		YK=T2Y(K)		199
200		T2X(J)=XK+CS-YK+SS		
201		T2Y(J)=XK*SS+YK*CS		200
202		T2Z(J)=T2Z(K)		201
203		SALP(J)=SALP(K)	RE	202
204	22	BI(J)=BI(K)	RE	203
			RE	204
205		RETURN	RE	205
206			R E	206
207	24	FORMAT (29H GEOMETRY DATA ERRORSEGMENT, 15, 26H LIES IN PLANE OF S	DE	207
208		1YMMETRY)		
209	25	FORMAT (27H GEOMETRY DATA ERRORPATCH, 14, 26H LIES IN PLANE OF SYM	RE	208
210		IMETRY)		
211		END		210
			RE	211-

KOM2

PURPOSE

To numerically integrate over the current distribution on a segment to obtain the field due to the Sommerfeld integral term.

METHOD

ROM2 integrates the product of $\overline{E}_{s}(\overline{r})$ (see discussion of EFLD) and the current over a segment. Separate integrals are evaluated for current distributions of constant, sin $k(s - s_0)$ and cos $k(s - s_0)$. With three vector components of the field, there are nine integrals evaluated simultaneously and stored in the array SUM. The integration method is the same as that described for subroutine INTX, but loops from one through nine are used at each step.

The parameter DMIN is set in EFLD to

DMIN = 0.01
$$[|E_x|^2 + |E_y|^2 + |E_z|^2]^{1/2}$$

where
$$\vec{E}' = \int_{\text{segment}} [\vec{E}_{D}(\vec{r}) + \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \vec{E}_{I}(\vec{r})] ds$$

DMIN is passed to TEST as the lower limit for the denominator in the relative error evaluation to avoid trying to maintain relative accuracy in integrating the Sommerfeld integral when it is much smaller than the other terms.

SYMBOL DICTIONARY A = lower limit of integral B = upper limit of integral DMIN = minimum for denominator in relative error test

G1, G2, G3, G4, G5	= integrand values at points within the
	subinterval
N	<pre>= number of functions (9)</pre>
NM	= minimum subinterval size is (B - A)/NM
NS	= present subinterval size is (B - A)/NS
N'T	= counter to control increasing
	subinterval size
NTS	= larger values retard increasing
	subinterval size
NX	= maximum subinterval size is (B - A)/NX
КX	= relative error limit
S	= B - A
SUM	= array for integral values
T00, T01, T02, T10, T11, T20	= (see subroutine INTX)
TMAG1, TMAG2	= sum of the magnitudes of the integral
	contributions for the constant current
	distribution
Z	= integration variable at left side of
	subinterval
ZE	= B
ZEND	= upper limit

ROM2

CONSTANTS

1.E-4 = relative error criterion
65536 = limit for cutting subinterval size

1	SUBROUTINE ROM2 (A,B,SUM,DMIN)	RO	1
2 C		RO	1 2
3 C	FOR THE SOMMERFELD GROUND OPTION, ROM2 INTEGRATES OVER THE SOURCE	RO	3
4 C	SCOMENT TO OBTAIN THE TOTAL FIELD DUE TO GROUND THE METHOD OF	RO	
5 C	VARIABLE INTERVAL WIDTH ROMBERG INTEGRATION IS USED. THERE ARE TO		4
6 C	FIELD COMPONENTS - THE X. Y. AND Z COMPONENTS DUE TO CONSTANT	RO	5
7 C	SINE, AND COSINE CURRENT DISTRIBUTIONS.	RO	6
8 C		RO	7
9	COMPLEX_SUM, G1, G2, G3, G4, G5, T00, T01, T10, T02, T11, T20	RO	8
10	DIMENSION SUM(9), G1(9), G2(9), G3(9), G4(9), G5(9), T01(9), T10(9	RO	9
11	1), T20(9)		10
12	DATA NM, NTS, NX, N/65536, 4, 1, 9/, RX/1. E-4/	RO	11
13	Z=A	RO	12
14	ZE=B	RO	13
15	S=B-A	RO	14
16	IF (S.GE.O.) GO TO 1	RO	15
17	PRINT 18	RO	16
18	STOP	RO	17
19 1	EP=S/(1.E4*NM)	RO	18
20	ZEND=ZE-EP	RO	19
21		RO	20
22 2	DO 2 I=1,N	RO	21
22 2	SUM(I) = (00.)	RO	22
	NS=NX	RO	23
24	NT=0	RO	24
25	CALL SFLDS (Z,G1)	RO	25
26 3	DZ=S/NS	RO	26
27	IF (Z+DZ.LE.ZÉ) GO TO 4	RO	27
28	DZ=ZE-Z	RO	28
29	IF (DZ.LE.EP) GO TO 17	RO	29
30 4	DZOT=DZ*.5	RO	30
31	CALL SFLDS (Z+DZOT.G3)	RO	31
32	CALL SFLDS (Z+DZ,G5)	RO	32
33 5	TMAG1=0.	RO	33
34	TMAG2=0.	RO	33 34
35 C			
36 C	EVALUATE 3 POINT ROMBERG RESULT AND TEST CONVERGENCE.	RO	35
37 C	The second	RO	36
38	DO 6 I=1,N	RO	37
39	T00=(G1(I)+G5(I))*DZOT	RO	38
40	$TO1(I) = (TO0 + DZ \cdot G3(I)) \cdot .5$	RO	39
41	$T_{10}(T) = (4 + T_{01}(T) - T_{00})/2$	RO	40
42	IF (I.GT.3) GO TO 6	RO	41
43	TR=REAL(TO1(I))	RO	42
44	TI = AIMAG(TO1(I))	RO	43
45	THACI-THACI TRATE TATE	RO	44
46	TR = REAL(110(I))	RO	45
47		RO	46
48		RO	47
	CONTINUE	RO	48
	TMAG1=SQRT(TMAG1)	RO	49
	TMAG2=SQRT(TMAG2)	RO	50
	CALL TEST(TMAG1,TMAG2,TR.O.,O.,TI,DMIN)	RO	51
	IF(TR.GT.RX)GO TO 8	RO	52
54	DO 7 I=1,N	RO	53
		RO	54
	SUM(I) = SUM(I) + TIO(I)	RO	55
	NT=NT+2	RO	56
	GO TO 12	RO	57
58 8	CALL SFLDS (Z+DZ+.25,G2)	RO	58
	CALL SFLDS (Z+DZ+.75,G4)	RO	59
	IMAG1=0.	RO	60
	IMAG2=0	RO	61
62 C		RO	62
63 C	PVALUATE S PRINT PRINTERC DECHLY AND TERT ADDRESS	RO	63
64 C		RO	64
			~ -

65	DO 9 I=1,N	RO	65
6 6	TO2=(TO1(I)+DZOT*(G2(I)+G4(I)))*.5	RO	66
67	$T_{11} = (4, *T_{02} - T_{01}(I))/3.$	RO	67
68	$T_{20}(I) = (16. T_{11} - T_{10}(I))/15.$	RO	68
69	IF (I.GT.3) GO TO 9	RO	69
70	TR=REAL(T11)	RO	70
71	TI=AIMAG(T11)	RO	71
72	TMAG1=TMAG1+TR+TR+TI+TI	RO	72
73	TR=REAL(T20(I))	RO	73
74	TI = AIMAG(T20(I))	RO	74
· 75	TMAG2=TMAG2+TR+TR+TI+TI	RO	75
76 9	CONTINUE	RO	76
77	TMAG1=SQRT(TMAG1)	RO	77
78	TMAG2=SQRT(TMAG2)	RO	78
79	CALL TEST(TMAG1,TMAG2,TR,0.,0.,TI,DMIN)	RO	79
80	IF(TR.GT.RX)GO TO 14	RO	80
81 10	DO 11 I=1,N	RO	81
82 11	SUM(I)=SUM(I)+I2O(I)	RO	82
83	NT=NT+1	RO	83
84 12	Z=Z+DZ	RO	84
85	IF (Z.GT.ZEND) GO TO 17	RO	85
86	DO 13 I=1.N	RÖ	86
87 13	G1(I)=G5(I)	RO	87
88	IF (NT.LT.NTS.OR.NS.LE.NX) GO TO 3	RÔ	88
89	NS=NS/2	RO	89
90	NT=1	RO	90
91	GO TO 3	RO	91
92 14	NT=0	RO	92
93	IF (NS.LT.NM) GO TO 15	RO	93
94	PRINT 19, Z	RO	94
95	GO TO 10	RO	95
96 15	NS=NS*2	RO	96
97	DZ=S/NS	RO	97 08
98	DZOT=DZ*.5	RO	98
99	DO 16 I=1,N	RO	99
100	G5(I)=G3(I)		100 101
101 16	G3(I)=G2(I)		102
102	GO TO 5		102
103 17	CONTINUE		
104	RETURN		104 105
105 C			105
106 18	FORMAT (30H ERROR - 8 LESS THAN A IN ROM2)		108
107 19	FORMAT (33H ROM2 STEP SIZE LIMITED AT Z =,E12.5)		108
108	END	ĸö	

-

.

,

ų,

SBF

PURPOSE

To evaluate the current expansion function associated with a given segment, returning only that portion on a particular segment.

METHOD

SBF is very similar to routine TBF. Both routines evaluate the current expansion functions. However, while TBF stores the coefficients for each segment on which a given expansion function is non-zero, SBF returns the coefficients for only a single specified segment.

In the call to SBF, I is the segment on which the expansion function is centered. IS is the segment for which the function coefficients A_j , B_j and C_j are requested. These coefficients are returned in AA, BB, CC, respectively.

Refer to TBF for a discussion of the coding and variables. One additional variable in SBF -- JUNE -- is set to -1 or +1 if segment IS is found connected to end 1 or end 2, respectively, of segment I. If I = IS and segment I is not connected to a surface or ground plane, then JUNE is set to 0.

1	_	SUBROUTINE SBF (I,IS,AA,BB,CC)	S8	1
2	С	COMPUTE COMPONENT OF BASIS FUNCTION I ON SEGMENT IS.	SB	2
3		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300		3
4		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(4
5		2300), WLAM, IPSYM	SB	5
6		DATA PI/3.141592654/,JMAX/30/	SB	6
7		AA=0.	SB SD	7
8		88=0.	SB	8
9			SB SB	9 10
10		JUNE=0	SB	11
11		JSNO=0 PP=0.	58 58	12
12 13		JCOX=ICON1(I)	58	13
14		IF (JCOX.GT.10000) JCOX=I	SB	14
15		JEND=-1	SB	15
16		IEND=-1	SB	16
17		SIG=-1.	58	17
18		IF (JCOX) 1,11,2	SB	18
19	1	JCOX=-JCOX	SB	19
20	•	GO TO 3	SB	20
21	2	SIG=-SIG	SB	21
22	-	JEND=~JEND	SB	22
23	3	JSN0=JSN0+1	SB	23
24		IF (JSNO.GE.JMAX) GO TO 24	SB	24
25		D=PI*SI(JCOX)	SB	25
26		SDH=SIN(D)	SÐ	26
27		CDH=COS(D)	SB	27
28		SD=2.*SDH*CDH	SB	28
29		IF (D.GT.0.015) GO TO 4	SB	29
30		OMC=4.*D*D	SB	30
31		OMC=((1.3888889E-3*OMC-4.166666666667E-2)*OMC+.5)*OMC	SB	31
32		GO TO 5	SB	32
33	4	OMC=1CDH+CDH+SDH	SB	33
34	5	AJ=1./(ALOG(1./(PI*BI(JCOX)))577215664)	SB	34
35		PP=PP-OMC/SD*AJ	SB	35
36		IF (JCOX.NE.IS) GO TO 6	SB	36
37		AA=AJ/SD*SIG	SB	37
38		BB=AJ/(2,*CDH)	SB SB	38 39
39		CC=-AJ/(2.*SDH)*SIG	SB	40
40		JUNE=IEND	SB	41
41	6	IF (JCOX,EQ.I) GO TO 9	58 58	42
42		IF (JEND.EQ.1) GO TO 7	SB	43
43		JCOX=ICON1(JCOX)	SB	44
44			SB	45
45		JCOX=ICON2(JCOX)	SB	46
	8	IF (IABS(JCOX).EQ.I) GO TO 10 IF (JCOX) 1,24,2	SB	47
47		IF (JCOX, EQ, IS) BB = -BB	SB	48
	9 10	IF (IEND.EQ.1) GO TO 12	SB	49
	11	PM=-PP	S 8	50
51		PP=0.	SB	51
52		NJUN1=JSNO	S8	52
53		JCOX=ICON2(1)	SB	53
54		IF (JCOX.GT.10000) JCOX=I	SB	54
55		JEND=1	SB	55
56		IEND=1	SB	56
57		SIC=-1.	58	57
58		IF (JCOX) 1,12,2	SB	58
	12	NJUN2=JSNO+NJUN1	SB	59
60)	D=PI*SI(I)	SB	60
61		SDH=SIN(D)	S9	61
62		CDH=COS(D)	SB SB	62 63
63		SD=2.*SDH*CDH	SB	64
64	ŧ	CD=CDH+C9H-S0H+S0H	55	• •

65		
65	IF (D.GT.0.015) GO TO 13	SB 65
66	OMC=4.*D*D	SB 66
67	OMC=((1.3888889E-3*OMC-4.1666666667E-2)*OMC+.5)*OMC	SB 67
68	GO TO 14	SB 68
69 13	OMC=1CD	SB 69
70 14	AP=1./(ALOG(1./(PI*BI(I)))577215664)	SB 70
71	AJ=AP	SB 71
72	IF (NJUN1.EQ.O) GO TO 19	
73	IF (NJUN2.EQ.0) GO TO 21	S8 72
74	QP=SD*(PM*PP+AJ*AP)+CD*(PM*AP-PP*AJ)	SB 73
75	QM=(AP*OMC-PP*SD)/QP	SB 74
76		SB 75
77	QP=-(AJ*OMC+PM*SD)/QP	SB 76
	IF (JUNE) 15,18,16	SB 77
78 15	AA=AA•QM	SB 78
79	80=88*QM	SB 79
80	CC=CC*QM	SB 80
81	GO TO 17	SB 81
82 16	AA=-AA+QP	SB 82
83	88=88 • QP	SB 83
84	CC=-CC+QP	SB 84
85 17	IF (I.NE.IS) RETURN	SB 85
86 18	AA=AA-1.	
87	BB=BB+(AJ*QM+AP*QP)*SDH/SD	SB 86
88	CC=CC+(AJ+QM-AP+QP)+CDH/SD	SB 87
89	RETURN	SB 88
		SB 89
90 19	IF (NJUN2.EQ.0) GO TO 23	SB 90
91	QP=PI*BI(I)	SB 91
92	XXI=QP*QP	SB 92
93	XXI=QP*(15*XXI)/(1XXI)	SB 93
94	QP=-(OMC+XXI*SD)/(SD*(AP+XXI*PP)+CD*(XXI*AP-PP))	SB 94
95	IF (JUNE.NE.1) GO TO 20	SB 95
96	AA=-AA*QP	SB 96
97	BB=BB+QP	SB 97
98	CC≂-CC*QP	SB 98
99	IF (I.NE.IS) RETURN	
100 20	AA=AA-1.	SB 99
101	D=CD-XXI•SD	SB 100
102		SB 101
	BB=BB+(SDH+AP*QP*(CDH-XXI*SDH))/O	SB 102
103	CC=CC+(CDH+AP*QP*(SDH+XXI*CDH))/D	SB 103
104	RETURN	SB 104
105 21	QM=PI*BI(I)	SB 105
106	XXI=QM*QM	SB 106
107	XXI=QM*(15*XXI)/(1XXI)	SB 107
108	QM=(OMC+XXI*SD)/(SD*(AJ-XXI*PM)+CD*(PM+XXI*AJ))	SB 108
109	IF (JUNE.NE1) GO TO 22	SB 109
110	AA=AA • QM	SB 110
111	BB≍B8♦QM	SB 111
112	CC=CC*QM	SB 112
113	IF (I.NE.IS) RETURN	SB 113
114 22	AA=AA-1.	SB 114
115	D=CD-XXI*SD	
116		SB 115
117	BB=BB+(AJ*QM*(CDH-XXI*SDH)-SDH)/D	SB 116
118	CC=CC+(CDH-AJ*QM*(SDH+XXI*CDH))/D	SB 117
		SB 118
119 23		SB 119
120	QP=PI•81(I)	SB 120
121	XXI=QP*QP	SB 121
122	XXI=QP•(15•XXI)/(1XXI)	SB 122
123	CC=1./(CDH-XXI*SDH)	SE 123
124	RETURN	SB 124
125 24	PRINT 25, I	SB 125
126	STOP	SB 126
127 C		SB 127
128 25	FORMAT (43H SBF - SEGMENT CONNECTION ERROR FOR SEGMENT, IS)	SB 128
		20 110

SBF

129 END

SB 129-

SECOND

PURPOSE

To obtain the time in seconds

METHOD

This subroutine acts as an interface of the computer system's time function and the NEC program. The system time function is called, the number is converted to seconds, and returned to the NEC program through the argument of subroutine SECOND. On CDC 6000 series computers, the system time function is SECOND and is called by the NEC program. This subroutine is, therefore, omitted on CDC 6000 computers.

CODE LISTING

1 SUBROUTINE SECOND (T)

SE t

Call system time function and set T equal to time in seconds.

9	RETURN	SE	9
10	END	SE	10-

SFLDS

PURPOSE

To evaluate the Sommerfeld-integral field components due to an infinitesimal current element on a segment.

METHOD

The coordinates of the segment are stored in COMMON/DATAJ/. The current element, at a distance T from the center of the segment is located at (XT, YT, ZT). From SL16 to SL42 the ρ , ϕ and z coordinates of the field evaluation point (X0, Y0, Z0) are computed in a coordinate system with the z axis passing through the current element and $\phi = 0$ in the direction of the segment reference direction projected on the x,y plane. R2 is as shown in Figure 6 (page 160) and is the same as Rl in Section IV of Part I.

The Sommerfeld-integral field is computed from SL85 to SL111 by giving R2 and $\theta^{\prime},$ with

$$\theta' = \tan^{-1} \left(\frac{z + z'}{\rho} \right) ,$$

to subroutine INTRP. INTRP returns the quantities in equations 156 through 159 of Part I as

$$ERV = I_{\rho}^{V}$$
$$EZV = I_{Z}^{V}$$
$$ERH = I_{\rho}^{H}$$
$$EPH = I_{\phi}^{H}$$

These quantities are then multiplied by $\exp(-jkR_2)/R_2$. The components for a horizontal current element are multiplied by the appropriate factors of sin φ or cos φ and combined with the components for a vertical current element according to the elevation angle of the segment. Thus lines SL94 to SL96 are the ρ , z and φ components of the field of the current element. These are converted to x, y and z components and stored in E(1), E(2) and

-315-

E(3). They are also multiplied by sin(kT) and cos(kT) for the sine and cosine current distributions and stored in other elements of E.

When the separation of the source segment and observation point is large enough that the Norton approximation is used for the field, the code from SL49 to SL80 is executed. In this case SFLDS is called directly by EFLD, with T equal to zero, and returns an approximation to the field of the whole segment. The current is lumped at the center for a point source approximation.

GWAVE computes the total field including direct field and the asymptotic approximation of the field due to ground. Since EFLD has already computed

$$\bar{E}_{D}(\bar{r}) + \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \bar{E}_{I}(\bar{r})$$

these terms must be removed from the field computed by GWAVE. The direct field \overline{E}_D is set to zero by setting XX1 to zero before calling GWAVE. The second term is substracted from the field returned by GWAVE from SL59 to SL63. The field components of a vertical (V) and horizontal (H) current element in the direction $\phi = 0$ at the image point are

$$E_{\rho}^{V} = (E_{R} + E_{T}) \sin \theta \cos \theta$$

$$E_{Z}^{V} = E_{R} \cos^{2} \theta - E_{T} \sin^{2} \theta$$

$$E_{\rho}^{H} = (E_{R} \sin^{2} \theta - E_{T} \cos^{2} \theta) \cos \phi$$

$$E_{Z}^{H} = (E_{R} + E_{T}) \sin \theta \cos \theta \cos \phi$$

$$E_{\phi}^{H} = E_{T} \sin \phi$$

where

$$E_{R} = \frac{-jn}{4\pi^{2}} \frac{\exp(-jkR_{2})}{(R_{2}/\lambda)^{3}} (1 + jkR_{2})$$

$$E_{T} = \frac{-j\eta}{8\pi^{2}} \frac{\exp(-jkR_{2})}{(R_{2}/\lambda)^{3}} (1 - k^{2}R_{2}^{2} + jkR_{2})$$

$$\cos \theta = (z + z')/R_{2}$$

$$\sin \theta = \rho/R_{2}$$

and current moment, $I l / \lambda^2 = 1$.

The sin ϕ and cos ϕ factors are omitted to match the quantities returned by GWAVE. Also, the fields of the horizontal current are reversed since the image of the source is in the direction $\phi = 180$ degrees. These quantities are multiplied by FRATI and subtracted from the fields returned by GWAVE.

The total field, in x, y and z components, is stored from SL70 to SL72. S is the length of the segment in wavelengths. Hence it is $I\ell/\lambda^2$ when $I/\lambda = 1$. The current moment for a sine distribution is zero and for a cosine distribution is $sin(\pi S)/\pi$.

SYMBOL DICTIONARY

CPH	= cos φ
E	= array for returning field components
EPH	= E_{ϕ}^{H} or I_{ϕ}^{H}
ER	$= E_{\mathbf{k}}$
ERH	$= E_{\rho}^{H} \text{ or } I_{\rho}^{H}$
ERV	$= E_{\rho}^{V} \text{ or } I_{\rho}^{V}$
ET	= E _T
EZH	$= E_Z^H \text{ or } I_Z^H$
EZV	= E_Z^V or I_Z^V
FRATI	$= (k_1^2 - k_2^2) / (k_1^2 + k_2^2)$
HRH	= E_{ρ}^{H} for image of source current element

HRV	$= E_{\rho}^{V}$
HZV	$= H_Z^V$
PHX	= x component of ϕ
РНҮ	≠ y component of ¢
ΡI	= π
POT	$= \pi/2$
R 1	= direct distance to source (set to arbitrary value)
R2	= distance to image
R 2S	$= (R2)^2$
R HØ	= ρ
RHS	$= \rho^2$
RHX	= x component of ρ
RHY	= y component of p
RK	$= kR_2$
SFAC	= value of current or current moment
S PH	= sín φ
Т	= distance from center of segment to current element
THET	= 0'
ΤP	= 2π
XT, YT, ZT	= coordinates of current element
Z PHS	$= (z + z')^2$

CONSTANTS

1.570796327 = $\pi/2$ 3.141592654 = π 6.283185308 = 2π

1	с	SUBROUTINE SFLDS (T,E)	SL	1
	č	SFLDX RETURNS THE FIELD DUE TO GROUND FOR A CURRENT ELEMENT ON	SL	2
	c	THE SOURCE SEGMENT AT T RELATIVE TO THE SEGMENT CENTER.	SL	3
5	с	The second content of the second of center,	SL	4
6		COMPLEX E, ERV, EZV, ERH, EZH, EPH, TI, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, E	SL SL	5 6
7		1ZC, XX1, XX2, U, U2, ZRATI, ZRATI2, FRATI2, FRATI, ER, ET, HRV, HZV, HRH	SL	7
8		COMMON /DATAJ/ S, B, XJ, YJ, ZJ, CABJ, SABJ, SALPJ, EXK, EYK, FZK, FXS, FYS, FZ	SI	8
9		1S,EXC,EYC,EZC,RKH,IEXK,IND1,IND2,IPGND	SL	9
10		COMMON /INCOM/ X0,Y0,Z0,SN,XSN,YSN,ISNOR	SL	10
11		COMMON /GWAV/ U.U2.XX1.XX2.R1.R2.ZMH.ZPH	51	11
12		COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR,	SL	12
13		11PERF, T1, T2	SL	13
14		DIMENSION E(9)	SŁ	14
15		DATA PI/3.141592654/, TP/6.283185308/, POT/1.570796327/	SL	15
16 17		XT=XJ+T*CABJ	SL	16
18		YT=YJ+T*SABJ ZT=ZJ+T*SALPJ	SL	17
19		RHX=XO-XT	SL	18
20		RHY=YO-YT	SL	19
21		RHS=RHX *RHX +RHY *RHY	SL	20
22		RHO=SQRT(RHS)	SL SL	21
23		IF (RHO.GT.O.) GO TO 1	SL SL	22 23
24		RHX=1.	SL	23
25		RHY=0.	SL	25
26		РНХ≍О.	ระ	26
27		PHY=1.	SL	27
28		GO TO 2	SL	28
29	1	RHX ≂RHX/RHO	SL	29
30		RHY=RHY/RHO	ŜL	30
31		PHX=-RHY	SL	31
32	•	PHY=RHX	SL	32
33	2	CPH=RHX*XSN+RHY*YSN	SL	33
34		SPH=RHY*XSNRHX*YSN	SL	34
35 36		IF (ABS(CPH).LT.1.E-10) CPH=0.	SL	35
37		IF (ABS(SPH).LT.1.E-10) SPH=0. ZPH=ZO+ZT	\$L	36
38		ZPHS=ZPH+ZPH	SL	37
39		R2S=RHS+ZPHS	SL SL	38
40		R2=SQRI(R2S)	SL	39 40
41		RK=R2 * TP	SŁ	41
42		XX2=CMPLX(COS(RK),-SIN(RK))	SL	42
43		IF (ISNOR.EQ.1) GO TO 3	SL	43
44	С		SL	44
45		USE NORTON APPROXIMATION FOR FIELD DUE TO GROUND. CURRENT IS	SL	45
46		LUMPED AT SEGMENT CENTER WITH CURRENT MOMENT FOR CONSTANT, SINE,	SL	46
47		OR COSINE DISTRIBUTION.	SL	47
48	C	7.41.4	SL	48
49 50		ZMH=1.	SL	49
51		R1=1. XX1=0.	SL	50
52		CALL GWAVE (ERV,EZV.ERH.EZH.EPH)	SL	51
53		ET=-(0.,4.77134)*FRATI*XX2/(R2S*R2)	SL SL	52 53
54		ER=2.*ET*CMPLX(1,,RK)	SL	54
55		ET=ET*CMPLX(1RK*RK,RK)	SL SL	54 55
56		HRV=(ER+ET)*RHO*ZPH/R2S	SL	56
57		HZV=(ZPHS*ER-RHS*ET)/R2S	SL	57
58		HRH=(RHS+ER-ZPHS+ET)/R2S	SL	58
59		ERV=ERV-HRV	SL	59
60		EZV=EZV-HZV	SL	60
61			SL	61
62		EZH=EZH+HRV	SL	62
63 64		EPH=EPH+ET ERV=ERV•SALPJ	SL	63
			SL	64

.

65	EZV=EZV+SALPJ		
66	ERH=ERH+SN+CPH	SL	65
67	EZH=EZH+SN+CPH	SL	66
68	EPH=EPH+SN+SPH	SL	67
69	ERH=ERV+ERH	SL	68
70	E(1)=(ERH*RHX+EPH*PHX)*S	SL	69
71	E(2)=(ERH*RHY+EPH*PHY)*S	SL	70
72	E(3)=(EZV+EZH)*S	\$L	71
73	E(4)=0.	SL	72
74	E(5)=0.	SL	73
75	E(6)=0.	SL	74
76	SFAC=PI*S	SL	75
77	SFAC=SIN(SFAC)/SFAC	SL	76
78	E(7)=E(1)+SFAC	SL	77
79	E(8)=E(2)+SFAC	SL	78
80	E(9) = E(3) + SFAC	SŁ	79
81	RETURN	SL	80
82 C		SL	81
83 C	INTERPOLATE IN SOMMERFELD FIELD TABLES	SL	82
84 C		SL	83
85 3	IF (RHO.LT.1.E-12) GO TO 4	SŁ	84
86	THET=ATAN(ZPH/RHO)	SL	85
87	GO TO 5	SL	86
88 4	THET=POT	SL	87
89 5	CALL INTRP (R2, THET, ERV, EZV, ERH, EPH)	SL	88
90 C	COMBINE VERTICAL AND HORIZONTAL COMPONENTS AND CONVERT TO X,Y,Z	SL	89
91 C	COMPONENTS. MULTIPLY BY EXP(-JKR)/R.	SL	90
92	XX2=XX2/R2	SL SL	91
93	SFAC=SN*CPH	SL	92 93
94	ERH=XX2*(SALPJ*ERV+SFAC*ERH)	SL	93 94
95	EZH=XX2*(SALPJ*EZV-SFAC*ERV)	SL	94 95
96	EPH=SN*SPH*XX2*EPH	SL	96
97 C	X.Y.Z FIELDS FOR CONSTANT CURRENT	SL	90 97
98	E(1)=ERH*RHX+EPH*PHX	SL	98
99	E(2)=ERH•RHY+EPH•PHY	SL	99
100	E(3)=EZH		100
101	RK=TP*T		101
102 C	X,Y,Z FIELDS FOR SINE CURRENT		102
103	SFAC=SIN(RK)		103
104	E(4)=E(1)*SFAC		104
105	E(5)=E(2)*SFAC		105
106	E(6)=E(3)*SFAC		106
107 C	X,Y,Z FIELDS FOR COSINE CURRENT		107
108	SFAC=COS(RK)		108
109	E(7)=E(1)*SFAC		109
110	E(8)=E(2)*SFAC		110
111	E(9)=E(3)*SFAC	SL	
112	RETURN		112
.113	END		113-
			-

SOLGF

PURPOSE

To solve for the basis function amplitudes in the NGF procedure.

METHOD

The operations performed here are described in the NGF overview in Section VI. SOLGF is called for either a NGF solution or a normal solution. For the normal solution, or for a NGF solution when no new segments or patches have been added, the solution is obtained by calling SOLVES at SF14. Otherwise, the rest of the code is executed.

The excitation vector XY is filled in the subroutine ETMNS in the order

E on NGF segments (N1 elements)
 E on new segments (N - N1 elements)
 H on NGF patches (2M1 elements)
 H on new patches (2M - 2M1 elements)

'rom SF18 to SF29 this vector is put in the order

1.	E on NGF segments)	
2.	H on NGF patches	^E 1
3.	E on new segments	F
4.	H on new patches	^E 2

o conform to the matrix structure. From SF30 to SF36, zeros are stored in XY n the locations opposite the rows of the C' matrix. Line SF37 then computes $\overline{L_1}^{-1} E_1$ storing it in place of E_1 .

SF41 to SF52 computes E_2^{-} C $A^{-1}E_1$ and stores it in palce of ² Matrix C is read from file 15 if necessary to form the product with $=^{1}E_1^{-1}$. From SF55 to SF80 SOLGF

$$I_2 = [D - CA^{-1}B]^{-1}[E_2 - CA^{-1}E_1]$$

is computed in the original location of E_2 . If ICASX is 4 the block parameters for the primary matrix are temporarily changed to those of D - CA⁻¹B so that LTSOLV, which uses the primary block parameters, can perform the solution procedure. From SF84 to SF95

$$I_1 = A^{-1}E_1 - (A^{-1}B)I_2$$

is computed. The reordering step at the beginning of SOLGF is then reversed from SF98 to SF107 to put the solution vector in the order

- 1. amplitudes of NGF basis functions
- 2. amplitudes of new basis functions
- 3. NGF patch currents
- 4. new patch currents
- 5. amplitudes of modified basis functions for NGF segments that connect to new segments
- 6. meaningless values associated with B'

Finally, from SF109 to SF113 the amplitudes of the modified basis functions are stored in place of the NGF basis functions that were set to zero.

SYMBOL DICTIONARY

А	= array for matrix A _F
В	= array starting just after A in CM (used for factoring
	$D - CA^{-1}B$ for ICASX = 2, 3 or 4)
С	= array for matrix C
D	= array used for factoring D - $CA^{-1}B$ when ICASX = 1
ICASS	= saved value of ICASE
IFL	= file in which blocks of A_{f} are stored in descending
	order (ascending order is always on 13)
1 P	= array of pivot element indices
м	= number of patches

Ml	= number of patches in NGF
MP	= number of patches in one symmetric section of the NGF
	structure
N	= number of segments
Nl	= number of segments in NGF
NIC	= number of unknowns in NGF (N1 + 2M1)
N 2	= N1 + 1
N 2C	= number of new unknowns (order of D)
NBLSYS	= saved value of NBLSYM
NEQ	= total number of unknowns (NGF and new)
NEQS	= number of columns in B'_{sw} and B'_{ss}
NLSYS	= saved value of NLSYM
NP	= number of segments in a symmetric section of the NGF
	structure
NPSYS	= saved value of NPSYM
SUM	= summation variable for matrix products
XY	= excitation and solution vector
NPSYS Sum	structure = saved value of NPSYM = summation variable for matrix products

	1	SUBROUTINE SOLGF (A, B, C, D, XY, IP, NP, N1, N, MP, M1, M, N1C, N2C)	SF	1
	2 C	SOLVE FOR CURRENT IN N.G.F. PROCEDURE	SF	2
	3	COMPLEX A, B, C, D, SUM, XY, Y	SF	3
	4	COMMON /SCRATM/ Y(600)		
	5	COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	SF	4
	6	1CON(10), NPCON		5
			SF	6
	7	COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	SF	7
i	8	1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	SF	8
	9	DIMENSION B(N1C,1), C(N1C,1), D(N2C,1), IP(1), XY(1)	SF	9
10	0	IFL=14		
1		IF (ICASX.GT.O) IFL=13	SF	10
1:		IF (N2C.GT.0) GO TO 1	SF	11
			SF	12
	3 C	NORMAL SOLUTION. NOT N.G.F.	SF	13
1		CALL SOLVES (A, IP, XY, N1C, 1, NP, N, MP, M, 13, IFL)	SF	14
13	5	GO TO 22	SF	15
1	61	IF (N1.EQ.N.OR.M1.EQ.O) GO TO 5	SF	16
1	7 C	REORDER EXCITATION ARRAY	SF	17
1		N2=N1+1		
1		J J = N + 1	SF	18
			SF	19
2		NPM=N+2*M1	SF	20
2		DO 2 I=N2,NPM	SF	21
2	22	Y(I)=XY(I)	SF	22
2	3	J=N1	SF	23
2	4	DO 3 I=JJ,NPM	SF	24
2	5	J=J+1	SF	25
	63	XY(J)=Y(I)		
2			SF	26
		DO 4 I=N2,N	SF	27
2		J=J+1	SF	28
2	94	(I)Y=(L)YX	SF	29
3	05	NEQS=NSCON+2 •NPCON	SF	30
3	1	IF (NEQS.EQ.0) GO TO 7	SF	31
3	2	NEQ=N1C+N2C	SF	32
3		NEQS=NEQ-NEQS+1	SF	33
	4 C	COMPUTE INV(A)E1	SF	34
3		DO 6 I=NEQS, NEQ	SF	35
	66	XY(I)=(0.,0.)	SF	36
3	77	CALL SOLVES (A.IP.XY.N1C,1.NP.N1,MP.M1,13,IFL)	SF	37
3	8	NI=0	SF	38
3	9	NPB=NPBL	SF	39
4	0 C	COMPUTE E2-C(INV(A)E1)	SF	40
4		DO 10 JJ=1,NBBL	SF	41
	2	IF (JJ.EQ.NBBL) NPB=NLBL	SF	42
	3	IF (ICASX.GT.1) READ (15) ((C(I,J),I=1,N1C),J=1,NPB)	SF	43
4	4	II=N1C+NI	SF	44
4	5	DO 9 I=1.NPB	SF	45
4	6	SUM≂(0.,0.)	SF	46
4	7	DO 8 J=1.N1C	SF	47
4	88	SUM=SUM+C(J,I)*XY(J)	SF	48
	.9	J=II+I	SF	49
	09			
		XY(J)=XY(J)-SUM	SF	50
	1 10	NI=NI+NPBL	SF	51
	2	REWIND 15	SF	52
5	3	J J=N1C+1	SF	53
5	4 C	COMPUTE INV(D)(E2-C(INV(A)E1)) = I2	SF	54
5	5	IF (ICASX.GT.1) GO TO 11	SF	55
	6	CALL SOLVE (N2C, D, IP(JJ), XY(JJ), N2C)	SF	56
	7	GO TO 13	SF	57
	8 11	IF (ICASX.EQ.4) GO TO 12	SF	58
	9	$NI=N2C \bullet N2C$	SF	59
	0	READ (11) (B(J,1), J=1,NI)	SF	60
	1	REWIND 11	SF	61
	2	CALL SOLVE (N2C,B,IP(JJ),XY(JJ),N2C)	SF	62
	3	GO TO 13	SF	63
6	64 12	NBLSYS=NBLSYM	SF	64

•

65		NPSYS=NPSYM	SF	65
66		NLSYS=NLSYM	SF	66
67		ICASS=ICASE	SF	67
68		NBLSYM≃NBBL	SF	68
69		NPSYM=NPBL	SF	69
70		NLSYM=NLBL	SF	70
71		ICASE=3	SF	71
72		REWIND 11	SF	72
73		REWIND 16	SF	73
74		CALL LTSOLV (B,N2C,IP(JJ),XY(JJ),N2C,1,11,16)	SF	74
75		REWIND 11	SF	75
76		REWIND 16	SF	76
77		NBLSYM=NBLSYS	SF	77
78		NPSYM=NPSYS	SF	78
79		NLSYM=NLSYS	ŞF	79
80		ICASE=ICASS	SF	80
81	13	NI=0	SF	81
82		NPB=NPBL	SF	82
83	С	COMPUTE INV(A)E1-(INV(A)B)I2 = I1	SF	83
84		DO 16 JJ=1,NBBL	SF	84
85		IF (JJ.EQ.NBBL) NPB=NLBL	SF	85
86		IF (ICASX.GT.1) READ (14) ((B(I,J),I=1,N1C),J=1,NPB)	SF	86
87		II=N1C+NI	SF	87
88		DO 15 I=1,N1C	SF	88
89		SUM=(0.,0.)	SF	89
90		DO 14 J=1,NPB	SF	90
91		JP=II+J	SF	91
92	14	SUM=SUM+B(I,J)*XY(JP)	SF	92
93	15	XY(I)≃XY(I)-SUM	SF	93
94	16	NI=NI+NPBL	SF	94
95		REWIND 14	SF	95
96		IF (N1.EQ.N.OR.M1.EQ.0) GO TO 20	ŞF	96
97	С	REORDER CURRENT ARRAY	SF	97
98		DO 17 I=N2,NPM	SF	98
99	17	Y(I)=XY(I)	SF	99
100		JJ=N1C+1	SF	100
101		J=N1		101
102		DO 18 I=JJ.NPM	SF	102
103		J=J+1	SF	103
104	18	XY(J)=Y(I)	SF	104
105		DO 19 I=N2,N1C		105
106		1+L=L		106
107	19	XY(J)=Y(I)		107
108	20	IF (NSCON.EQ.0) GO TO 22	SF	108
109		J=NEQS-1		109
110		DO 21 I=1,NSCON		110
111		J=J+1		111
112		JJ=ISCON(I)		112
113	21	XY(JJ)=XY(J)		113
114	22	RETURN	SF	114
115		END		115-

SOLVE

PURPOSE

To solve the system LUx = B, where L is a lower triangular matrix with ones on the diagonal, U is an upper triangular matrix, and B is the right-hand side vector (RHS).

METHOD

The algorithm used is described on pages 409-415 of ref. 1. The solution of the matrix equation LUx = B is found by first solving

$$Ly = B, (3)$$

and then

$$U_{X} = y, \tag{4}$$

since

$$LUx = Ly = B$$

The solution of equations (3) and (4) is straightforward since the matrices are both triangular. The solution of equation (3) can be written

$$y_{i} = \frac{1}{\ell_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} \ell_{ij} y_{j} \right) \quad i = 1, \dots, n .$$

Equation (4) can be written similarly.

The L and U matrices are both supplied by the subroutine FACTR and are stored in the matrix A; the l's on the diagonal of L are suppressed. Care must be exercised in the solution, since rows were interchanged during factorization, and this necessitates rearranging the RHS vector; furthermore, the L matrix itself is not completely rearranged. The information pertinent to the row rearrangements has been stored by FACTR in an integer array (IP), and it is used in the computations. The final solution of the equations is overwritten on the input RHS vector E.

The only differences between the coding in SOLVE and the coding suggested in ref. 1 are: (1) double precision variables are not used for the accumulation of sums, since, for the size of matrices anticipated in core, the computer word length is sufficient, and (2) the transposes of the L and U matrices are supplied in A by FACTR. Thus, the row and column indices used in the routine are reversed to account for this transposition.

-326--

CODING

S015 - S025 The solution for y in equation (3). S029 - S039 The solution for x in equation (4) and the storage of the solution in B.

SYMBOL DICTIONARY

- A = array contains the input L and U matrices
- B = array contains the input RHS and is overwritten with the solution
- I = DO loop index
- IP = array contains row positioning information
- IP1 = I + 1
- J = DO loop index
- K = DO loop index
- N = order of the matrix being solved
- NDIM = dimension of the array where the matrix is stored NDIM \geq N

PI = intermediate integer

- SUM = intermediate variable
- Y = scratch vector

SOLVE

,

1	с	SUBROUTINE SOLVE (N.A.IP.B.NDIM)	so so	1 2
_	c	SUBROUTINE TO SOLVE THE MATRIX EQUATION LU*X=8 WHERE L IS A UNIT	so	3
	c	LOWER TRIANGULAR MATRIX AND U IS AN UPPER TRIANGULAR MATRIX BOTH	so	4
	c	OF WHICH ARE STORED IN A. THE RHS VECTOR B IS INPUT AND THE	so	5
	c	SOLUTION IS RETURNED THROUGH VECTOR B. (MATRIX TRANSPOSED.	sõ	6
	c	SUEDITOR IS REFORMED HIROGON FEOLOR D. (MATRIX HARDIOSED)	so	7
8	C	COMPLEX A, B, Y, SUM	sõ	8
9		INTEGER PI	so	9
10		COMMON /SCRATM/ Y(600)	so	10
11		DIMENSION A(NDIM, NDIM), IP(NDIM), B(NDIM)	so	11
12	с		SO	12
13		FORWARD SUBSTITUTION	SO	13
14	-		so	14
15	-	DO 3 I=1,N	so	15
16		PI=IP(I)	S0	16
17		Y(I)=B(PI)	S0	17
18		B(PI) = B(I)	so	18
19		IP1=I+1	SO	19
20		IF (IP1.GT.N) GO TO 2	SO	20
21		DO 1 J=IP1,N	SO	21
22		B(J)=B(J)-A(I,J)*Y(I)	SO	22
23	1	CONTINUE	SO	23
24	2	CONTINUE	so	24
25	3	CONTINUE	SO	25
26	С		SO	26
27	С	BACKWARD SUBSTITUTION	SO	27
28	С		SO	28
29		DO 6 K=1,N	SO	29
30)	I=N-K+1	SO	30 31
- 31		SUM=(0.,0.)	SO SO	31 32
32		IP1=I+1	50 50	33
33		IF (IP1.GT.N) GO TO 5	50 50	34
34		DO 4 J=IP1,N	so	35
35		SUM=SUM+A(J,I)*B(J)	\$0	36
	54	CONTINUE	so	37
	75	CONTINUE	so	38
38		B(I)=(Y(I)-SUM)/A(I,I)	so	39
	96		so	40
4(RETURN	so	41-
41	l	END		•••

SOLVES

PURPOSE

To control solution of the matrix equation, including transforming and reordering the solution vector.

METHOD

When SOLVES is called, the array B contains the excitation computed by subroutines ETMNS or NETWK. The exciting electric field on all segments is stored first in B, followed by the magnetic fields on all patches. In the case of a symmetric structure, however, the matrix is filled with the coefficients of all segment and patch equations in the first symmetric sector occurring first. These are followed by the coefficients for successive sectors in the same order. This order is required for the solution procedure for symmetric structures described in section III-5 of Part I. For the case of a symmetric structure with both segments and patches, SOLVES first rearranges the excitation coefficients in array B to correspond to the order of the matrix coefficients.

For symmetric structures, SOLVES then computes the transforms of the subvectors in B according to equation (88) of Part I. Subroutine SOLVE or LTSOLV is then called to compute the solution or solution subvectors. The procedure is selected by the parameter ICASE as follows.

- 1 No symmetry, matrix in core. SOLVE is called for the solution.
- 2 Symmetry, matrix in core. SOLVE is called for each subvector.
- 3 No symmetry, matrix out of core. LTSOLV is called for the solution.
- 4 Symmetry, complete matrix does not fit in core but submatrices do. SOLVE is called for each subvector after first reading the appropriate submatrix from file IFL1.
- 5 Symmetry, submatrices do not fit in core. LTSOLV is called for each subvector.

SOLVES then computes the total current by inverse transforming the subvectors by equation (115) of Part I. For a symmetric structure with segments and patches, SOLVES then rearranges the solution in array B to put all segment currents first, followed by all patch currents, which is the order of the original excitation coefficients.

SOLVES

Multiple right-hand-side vectors (NRH) may be processed simultaneously at each step in SOLVES. This reduces the time spent reading files when LTSOLV is called, and is used in computing $A^{-1}B$ in the NGF procedure.

CODENG

SS22 - SS39 Rearrange excitation coefficients.
SS43 - SS56 Transform subvectors.
SS63 - SS75 Solve for each subvector.
SS81 - SS94 Inverse transform subvectors.
SS96 - SS113 Rearrange solution coefficients.

SYMBOL DICTIONARY

A	= array set aside for in-core matrix storage, i.e., factored
	matrices
В	= right-hand side; the solution is overwritten on this array also
F NO P	= decimal form of NOP
FNORM	= 1/FNOP
IFLL	= file with matrix blocks in normal order
IFL2	= file with matrix blocks in reversed order
1 P	= array containing positioning data used in SOLVE
М	= number of patches
MP	= number of patches in a symmetric sector
N	= number of segments
NCOL	= number of columns in array A
NEQ	= order of complete matrix
NOP	= number of symmetric sectors
NP	= number of segments in a symmetric sector
NPEQ	= order of a submatrix
NRH	= number of right-hand-side vectors in B
NROW	= number of rows in A
SSX	= array containing the coefficients S_{ik} in equation (89) of
	Part I
SUM	= summation variable
Y	= scratch vector

1	SUBROUTINE SOLVES (A, IP, B, NEQ, NRH, NP, N, MP, M, IFL1, IFL2)		
2 C	(A, 11, 0, NEQ, NAT, NF, N, MF, M, 11, 11, 11, 2)	SS	1
3 C	SUBROUTINE SOLVES, FOR SYMMETRIC STRUCTURES, HANDLES THE	55 55	2 3
40	RANSFORMATION OF THE RIGHT HAND SIDE VECTOR AND SOLUTION OF THE	SS	4
5 C 6 C	MATRIX EQ.	ss	5
7		SS	6
8	COMPLEX A.B.Y.SUM.SSX COMMON /SMAT/ SSX(16.16)	S 5	7
9	COMMON /SCRATM/ Y(600)	SS	8
10	COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	SS	9
11	1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL		10
12	DIMENSION A(1), IP(1), B(NEQ.NRH)	55 55	11
13	NPEQ=NP+2*MP	SS	12 13
14	NOP=NEQ/NPEQ	SS	14
15 16		SS	15
17	FNORM=1./FNOP NROW=NEQ	SS	16
18	IF (ICASE.GT.3) NROW=NPEQ	SS	17
19	IF (NOP.EQ.1) GO TO 11	SS	18
20	DO 10 IC=1,NRH	SS	19
21	IF (N.EQ.O.OR.M.EQ.D) GO TO 6	55 55	20 21
22	DO 1 I=),NEQ	33 SS	22
23 1	Y(I)=B(I,IC)	ŝŝ	23
24	KK=2*MP	SS	24
25 26		SS	25
20	IB=N J=NP	55	26
28	DO 5 K=1,NOP	SS	27
29	IF (K.EQ.1) GO TO 3	SS	28
30	DO 2 I=1,NP	SS	29
31	IA=IA+1	SS SS	30 31
32	J=J+1	SS	32
33 2	$B(J,IC) \approx Y(IA)$	SS	33
34	IF (K.EQ.NOP) GO TO 5	SS	34
353 36	DO 4 I=1,KK IB=I8+1	SS	35
37	10-10+1 J≃J+1	SS	36
38 4	B(J, IC)=Y(IB)	SS	37
39 5	CONTINUE	SS	38
40 C		SS SS	39 40
41 C	TRANSFORM MATRIX EQ. RHS VECTOR ACCORDING TO SYMMETRY MODES	SS	41
42 C		SS	42
436 44	DO 10 I=1,NPEQ	\$\$	43
45	DO 7 K=1,NOP IA=I+(K~1)*NPEQ	SS	44
46 7	Y(K) = B(IA, IC)	SS	45
47	SUM=Y(1)	SS	46
48	DO 8 K=2,NOP	SS SS	47
498	SUM=SUM+Y(K)	33 SS	48 49
50	B(I,IC)=SUM*FNORM	ss	50
51	DO 10 K=2,NOP	SS	51
52 53	IA=I+(K-1)•NPEQ SUM=Y(1)	\$S	52
54		SS	53
55 9	SIM=SIM+Y(-+)+CON (C(SSY(K+)))	SS	54
56 10	R(TA TC)-SHMEENODA	SS	55
57 11	TE (ICASE LT 3) CO TO 12	SS SS	56 57
58	REWIND IFL1	33 SS	58
59	REWIND 1ET 2	ss	59
60 C 61 C		5 5	60
62 C		SS	61
63 12	DO IN KKELNOP	SS	62
64	1A=(KK-1)*NPEO+1	SS SS	63 -
		دد	64

SOLVES

65	IB=IA	SS	65
66	IF (ICASE.NE.4) GO TO 13	55	66
67	I=NPEQ*NPEQ	\$5	67
68	READ (IFL1) $(A(J), J=1, I)$	SS	68
69	IB=1	SS	
70 13	IF (ICASE.EQ.3.OR.ICASE.EQ.5) GO TO 15	SS	
71	DO 14 IC=1,NRH	SS	71
72 14	CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)	SS	72
73	GO TO 16	SS	
74 15	CALL LTSOLV (A,NPEQ,IP(IA),B(IA,1),NEQ,NRH,IFL1,IFL2)	\$5	74
75 16	CONTINUE	SS	75
76	IF (NOP.EQ.1) RETURN	SS	76
77 C		SS	77
78 C	INVERSE TRANSFORM THE MODE SOLUTIONS	SS	78
79 C		S S	79
80	DO 26 IC=1,NRH	SS	80
81	DO 20 I=1,NPEQ	SS	81
82	DO 17 K=1.NOP	SS	82
83	IA=I+(K-1)*NPEQ	S S	83
84 17	Y(K) = B(IA, IC)	SS	84
85	SUM=Y(1)	SS	85
86	DO 18 K=2, NOP	SS	86
87 18	SUM=SUM+Y(K)	\$\$	87
88	B(I,IC)=SUM	SS	88
89	DO 20 K=2,NOP	SS	89
90	IA=I+(K-1)*NPEQ	\$\$	
91	SUM=Y(1)	SS	
92	DO 19 $J=2$, NOP	SS	
93 19	SUM=SUM+Y(J)*SSX(K,J)	SS	
94 20	B(IA,IC)=SUM	SS	
95	IF (N.EQ.O.OR.M.EQ.O) GO TO 26	SS	
96	DO 21 I=1,NEQ	SS	
97 21	Y(I)=B(I,IC)	SS	
98 99		SS	
100	IA≕NP IB≔N	SS	
100	J=NP		100
102	DO 25 K=1,NOP		101
102	IF (K.EQ.1) GO TO 23		102 103
103	DO 22 I=1,NP		103
105	IA=IA+1		104
106	J=J+1		106
107 22	B(IA, IC) = Y(J)		107
108	IF (K.EQ.NOP) GO TO 25		108
109 23	DO 24 I=1,KK		109
110	IB=IB+1		110
111	J=J+1		111
112 24	B(IB, IC) = Y(J)		112
113 25	CONTINUE		113
114 26	CONTINUE		114
115	RETURN	SS	115
116	END	SS	116-

TBF

PURPOSE

To evaluate the current expansion function associated with a given segment.

METHOD

The current expansion function is described in section III-1 of Part I. The parameter I is the number of the segment on which the function is centered. On segment I and on all segments connected to either end of segment I, the function has the form

$$f_{j}(s) = A_{j} + B_{j} \sin [k(s - s_{j})] + C_{j} \cos [k(s - s_{j})]$$
,

where j is the segment number. TBF locates all connected segments and stores the segment numbers, j, in JCO in COMMON/SEGJ/. It computes A_j , B_j , and C_j and stores them in AX, BX, and CX, respectively, in the same location as was used in JCO. A_j , B_j , and C_j for j = I are stored last in the arrays.

If ICAP = 0, the function goes to zero at an end of segment I to which no other segment or surface is connected. If ICAP \neq 0, the function has a non-zero value at a free end, allowing for the current onto the wire end cap.

CODING

Equations and symbols refer to Part I.

- TB9 TB55 This code forms a loop that locates all segments connected to the ends of segment I, first for end 1 (IEND = -1) and then for end 2 (IEND = 1).
- TB9 TB16 Parameters are initialized to start search for segments connected to end 1 of segment I.
- TB34 $PP = P_i^-$ for end 1 of segment I or P_i^+ for end 2 of segment I.
- TB35 TB37 Equations (43) to (48) of Part I evaluated except for Q_{i}^{\pm} : AX(JSNO) = A_{j}^{\pm}/Q_{i}^{\pm} BX(JSNO) = B_{j}^{\pm}/Q_{i}^{\pm} CX(JSNO) = C_{j}^{\pm}/Q_{i}^{\pm} JCO(JSNO) = j

TB38 Exit from loop if segment I is connected to a surface or ground plane. Segment I will occur in COMMON/SEGJ/ twice

	in this case, once for the center of the expansion func-
	tion on segment I and once for the part of the function
	extending onto the image of segment I in the surface.
	Line TB45 changes the sign of B_j^{\pm} for the image term. The
	sum of the two parts of the function on segment I then
	has zero derivative at the end connected to the surface.
TB39 - TB42	Check appropriate end of segment j to determine whether
	it shows a connection to segment I (end of search) or
	connection to another segment (multiple junction).
ТВ44	Continue search for connected segments (multiple junction).
TB46	Exit from loop after finishing search for both ends of
	segment I.
TB47 - TB55	Store values for end 1 of segment I and initialize for end
	2. Then return to previous loop.
TB59 - TB70	Evaluate functions of segment length and radius for
	segment I. For k Δ < 0.03, a series is used for 1 - cos k Δ ,
	where Δ = segment length.
TB73 - TB86	Final calculations if neither end of segment I is a free
	end.
TB89 - TB102	Final calculations for free end on end 1 of segment I.
	Final calculations for free end on end 2 of segment I.
	Final calculations for free ends on both ends of segment 1.
	$A_j = -1$ for $j = I$ in all cases.

SYMBOL DICTIONARY

AJ	$= a_{j}$
AP	$= a_{1}^{+}$
CD	$= \cos k\Delta_{i}$
CDH	$= \cos(k\Delta_{i}/2)$
Ð	= $k\Delta_i/2$ or $\cos k\Delta_i - X_i \sin k\Delta_i$
LCAP	= flag to determine whether the function goes to zero at a free
	end
TEND	1 during calculations for end 1 of segment I and +1 for end 2,
	* connection index
JEND	= -1 if end 1 of a segment is connected to segment I, +1 if end 2
	is connected to segment I.

TBF

JMAX = maximum number of segments allowed in the expansion function.

This includes segment I and all segments connected to either end. JSNOP = JSN + 1

NJUNI = N $NJUN2 = N^+$ = 1 - cos k∆ j OMC ΡI = π $= P_i$ PM $= P_i^+$ PP $= Q_i$ QM = Q**+** i QP = $\sin k\Delta_j$ SD = sin $(k \Delta_{j}/2)$ SDH = sign for calculation of A_j and C_j SIG = $J_1(ka_i)/J_0(ka_i)$ (small argument series used for Bessel functions) XX1

CONSTANTS

1	SUBROUTINE TBF (I,ICAP)	18	1
2 C 3	COMPUTE BASIS FUNCTION I COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	T 8 T 8	2 3
4	1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(TB	4
5	2300), WLAM, IPSYM	TB	5
6	COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	ТB	6
7	1CON(10),NPCON	T9	7
8	DATA PI/3.141592654/, JMAX/30/	TΒ	8
9	0=0NST	TB	9
10	PP=0.	TO	10
11	JCOX=ICONI(I)	18 18	11
12	IF (JCOX.GT.10000) JCOX=I	18 TB	12 13
13	JEND=-1 IEND=-1	TB	14
15	SIG=-1.	TĐ	15
16	IF (JCOX) 1,10,2	TΒ	16
17 1	JCOX=-JCÓX	TB	17
18	GO TO 3	TB	18
192	SIG=-SIG	TB	19
20	JEND=-JEND	TB	20
21 3	JSNO=JSNO+1	ТВ ТВ	21 22
22 23	IF (JSNO.GE.JMAX) GO TO 28 JCO(JSNO)=JCOX	TB	23
23	D=PI•SI(JCOX)	TB	24
25	SDH=SIN(D)	TΒ	25
26	CDH=COS(D)	TΒ	26
27	SD=2.*SDH*CDH	тв	27
28	IF (D.GT.0.015) GO TO 4	TB	28
29	OMC=4, *D*D	TB	29
30	OMC=((1.3888889E-3*OMC-4.1666666667E-2)*OMC+.5)*OMC	TB TB	30 31
31		TB	32
32 4 33 5	OMC=1CDH*CDH+SDH*SDH AJ=1./(ALOG(1./(PI*BI(JCOX)))577215664)	TB	33
34	PP=PP-OMC/SD*AJ	TB	34
35	AX(JSNO) = AJ/SD*SIG	ŢΒ	35
36	BX(JSNO) = AJ/(2. CDH)	TB	36
37	CX(JSNO)=-AJ/(2.*SDH)*SIG	TB	37
38	IF (JCOX.EQ.I) GO TO B	TB	38
28	IF (JEND.EQ.1) GO TO 6	TB	39
40	JCOX=ICON1(JCOX)	T 19 T 19	40 41
41		TB	42
426 437	JCOX=ICON2(JCOX) IF (IABS(JCOX).EQ.I) GO TO 9	ТВ	43
44	IF (JCOX) 1,28,2	TB	44
45 8	BX(JSNO) = -BX(JSNO)	ΤB	45
46 9	IF (IEND.EQ.1) GO TO 11	TB	46
47 10	PM=-PP	TB	47
48	PP=0.	TB TB	48
49	NJUN1=JSNO	TB	49 50
50 51	JCOX≖ICON2(I) IF (JCOX.GT.10000) JCOX=I	TB	51
52	JEND=1	TΒ	52
53	IEND=1	ΤB	53
54	SIG=-1.	TΒ	54
55	IF (JCOX) 1,11,2	TB	55
56 11	NJUN2=JSNO-NJUN1	TB	56
57	JSNOP=JSNO+1	TB TB	57 58
58	JCO(JSNOP)=I D=PI•SI(I)	TB	59
59 60	SDH=SIN(D)	TB	60
61	CDH=COS(D)	TB	61
62	SD=2.*SDH*CDH	T8	62
63	CD=CDH+CDH-SDH	TB	63
64	IF (D.GT.0.015) GO TO 12	TB	64

65	OMC=4.*D*D	TB 65
66	OMC=((1.38888889E-3*OMC-4.16666666667E-2)*OMC+.5)*OMC	TB 66
67	GO TO 13	TB 67
68 12	OMC=1CD	TB 68
69 13 70	AP=1./(ALOG(1./(PI*BI(I)))577215664)	TB 69
70		TB 70
71	IF (NJUNI.EQ.O) GO TO 16	TB 71
72	IF (NJUN2.EQ.0) GO TO 20	TB 72
73	QP=SD*(PM*PP+AJ*AP)+CD*(PM*AP-PP*AJ)	TB 73
74	QM=(AP*OMC-PP*SD)/QP	TB 74
75	QP=-(AJ*OMC+PM*SD)/QP	TB 75
76 77	BX(JSNOP)=(AJ*QM+AP*QP)*SDH/SD	TB 76
78	CX(JSNOP)=(AJ*QM-AP*QP)*CDH/SD	TB 77
79	DO 14 IEND=1,NJUN1	TB 78
80	AX(IEND)=AX(IEND) • QM	TB 79
81 14	BX(IEND)=BX(IEND)•QM CX(IEND)=CX(IEND)•QM	TB 80
82	JEND=NJUN1+1	TB 81
83	DO 15 IEND=JEND, JSNO	TB 82
84	$AX(IEND) \simeq -AX(IEND) + QP$	TB 83
85	BX(IEND)=BX(IEND)*QP	TB 84
86 15	$CX(IEND) = -CX(IEND) \circ QP$	TB 85
87	GO TO 27	TB 86
88 16	IF (NJUN2.EQ.0) GO TO 24	TB 87
89	IF (ICAP.NE.O) GO TO 17	TB 88 TB 89
90	XXI=0.	
91	GO TO 18	TB 90 TB 91
92 17	QP=PI*BI(I)	TB 92
93	XXI=QP+QP	TB 93
94	XXI=QP*(15*XXI)/(1XXI)	TB 94
95 18	QP=-(OMC+XXI*SD)/(SD*(AP+XXI*PP)+CD*(XXI*AP-PP))	TB 95
96	D=CD-XXI*SD	TB 96
97	BX(JSNOP)=(SDH+AP*QP*(CDH-XXI*SDH))/D	TB 97
98	CX(JSNOP)=(CDH+AP*QP*(SDH+XXI*CDH))/D	TB 98
99	DO 19 IEND=1,NJUN2	TB 99
100	AX(IEND)=-AX(IEND)*QP	TB 100
101	BX(IEND)=BX(IEND)•QP	T8 101
102 19	CX(IEND)=-CX(IEND)*QP	TB 102
103	GO TO 27	TB 103
104 20	IF (ICAP.NE.0) GO TO 21	TB 104
105	XXI=0,	TB 105
106	GO TO 22	TB 106
107 21	QM=PI*BI(I)	TB 107
108		TB 108
109 110 22	$XXI=QM^{\bullet}(15^{\bullet}XXI)/(1XXI)$	TB 109
111	QM=(OMC+XXI*SD)/(SD*(AJ-XXI*PM)+CD*(PM+XXI*AJ))	TB 110
112	D=CD-XXI*SD BX(JSNOP)=(AJ*QM*(CDH+XXI*SDH)-SDH)/D	TB 111
113	CX(JSNOP)=(CDH-AJ*QM*(SDH+XXI*CDH))/D	TB 112
114	DO 23 IEND=1, NJUN1	TB 113
115	AX(IEND)=AX(IEND)*QM	TB 114
116	BX(IEND)=BX(IEND)•OM	TB 115
117 23	CX(IEND)=CX(IEND)*QM	TB 116
118	GO TO 27	TB 117
119 24	BX(JSNOP)=0.	TB 118 TB 119
120	IF (ICAP.NE.O) GO TO 25	TB 120
121	XXI=0.	TB 121
122	GO TO 26	T9 122
i23 25	QP=PI*BI(I)	TB 123
124	XXI=QP • QP	TB 124
125	XXI=QP*(15*XXI)/(1XXI)	TB 125
126 26	CX(JSNOP)=1./(CDH-XXI•SDH)	TB 126
127 27	J\$NO=J\$NOP	TB 127
128	AX(JSNO) = -1.	T8 128

129	RETURN	TB 129
130 28	PRINT 29, I	TB 130
131	STOP	T8 131
132 C		TB 132
133 29	FORMAT (43H TBF - SEGMENT CONNECTION ERROR FOR SEGMENT, IS)	TB 133
134	END	T8 134-

TEST

PURPOSE

1

To compute the relative difference of two numerical integration results for the Romberg variable-interval-width integration routines.

METHOD

The first numerical integration result is the complex number (FlR, FlI) and the second is (F2R, F2I). The real and imaginary parts of the two results are subtracted and the differences are divided by the largest of F2R, F2I, DMIN or 10^{-37} . The denominator is chosen to avoid trying to maintain a small relative error for a quantity that is insignificantly small.

SYMBOL DICTIONARY

ABS	= external routine (absolute value)
DEN	= largest of F2R and F2I
DMIN	= minimum denominator
Fli	= imaginary part of first integration result
FIR	= real part of first integration result
F2I	= imaginary part of second integration result
F 2R	= real part of second integration result
ΤI	= relative difference of imaginary parts
TR	= relative difference of real parts

CONSTANT

1.E-37 = tolerance in test for zero

TEST

1		SUBROUTINE TEST (F1R,F2R,TR,F1I,F2I,TI,DMIN)	TE	
2	С			
3	С	TEST FOR CONVERGENCE IN NUMERICAL INTEGRATION	ΤE	2
4	-	TEST FOR CONVERGENCE IN NUMERICAL INTEGRATION	TE	3
5	Č		ΤE	4
_		DEN=ABS(F2R)	ΤĘ	5
6		TR=ABS(F2I)	TE	6
7		IF (DEN.LT.TR) DEN=TR	TE	7
8		IF (DEN.LT.DMIN) DEN=DMIN		
9		IF (DEN.LT.1.E-37) GO TO 1	TE	8
			ΤE	9
10		TR=ABS((F1R-F2R)/DEN)	ΤE	10
11		TI=ABS((FII-F2I)/DEN)	TE	11
12		RETURN	TE	12
13	1	TR=0.		. —
14		TI=0.	ΤE	13
			ΤE	14
15		RETURN	ΤE	15
16		END	ΤĒ	16-
			1 C	10-

TRIO

TRIO

PURPOSE

To evaluate each of the parts of current expansion functions on a single segment due to each of the segments connected to the given segment.

METHOD

TRIO consists of a loop that uses the connection data in arrays ICON1 and ICON2 to locate all segments connected to segment J. Subroutine SBF is called to evaluate the current expansion function centered on each connected segment and on segment J. Only the function coefficients for that part of each expansion function on segment J are returned and are stored in arrays AX, BX, and CX. The number of the segment with which each expansion function part is associated is stored in array JCO and the total number of expansion functions involved is stored as JSNO.

SYMBOL DICTIONARY

1				
	2 C	SUBROUTINE TRID (J)	TR	1
3		COMPUTE THE COMPONENTS OF ALL BASIS FUNCTIONS ON SEGMENT J	TR	2
-		COMMON /DATA/ LD.N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	ŤR	3
5		1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(2300), WLAM, IPSYM	TR	4
6			TR	5
7		COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP 1CON(10), NPCON		6
έ		DATA JMAX/30/	TR	7
ç		JSN0=0	TR	8
10		JCOX=ICON1(J)	TR	9
11		IF (JCOX.GT.10000) GO TO 7	TR	10
12		JEND=-1	TR	11
13	5	IEND=-1	TR	12
14	ŀ	IF (JCOX) 1,7,2	ŤR TR	13
15	5 1	JCOX=-JCOX	TR	14
16	5	GO TO 3		15
17	2	JEND=-JEND	TR	16 17
18	3	IF (JCOX.EQ.J) GO TO 6	TR	18
19	1	JSNO=JSNO+1	TR	19
20)	IF (JSNO,GE.JMAX) GO TO 9	TR	20
2.1		CALL SBF (JCOX, J, AX(JSNO), BX(JSNO), CX(JSNO))	TR	21
22		JCO(JSNO)=JCOX	TR	22
23		IF (JEND.EO.1) GO TO 4	TR	23
24		JCOX=ICON1(JCOX)	TR	24
25		GO TO 5	TR	25
	4	JCOX=ICON2(JCOX)	TR	26
	5	<u>IF (JCOX) 1,9,2</u>	TR	27
	6	IF (IEND.EQ.1) GO TO 8	TR	28
	7	JCOX=ICON2(J)	TR	29
.30		IF (JCOX.GT.10000) GO TO 8	TR	30
31		JEND=1	TR	31
32		IEND=1	TR	32
- 33		IF (JCOX) 1,8,2	TR	33
	8	JSN0=JSN0+1	TR	34
35		CALL SBF (J,J,AX(JSNO),BX(JSNO),CX(JSNO))	TR	35
36		JCO(JSNO)=J	TR	36
37		RETURN	TR	37
	9	PRINT 10, J	ΤR	38
39		STOP	TR	39
	C.		TR	40
	10	FORMA1 (44H TRIO - SEGMENT CONNENTION ERROR FOR SEGMENT, IS)	TR	41
42		END	TR	42-

UNERE

PURPOSE

To calculate the electric field due to unit currents in the \hat{t}_1 and \hat{t}_2 directions on a surface patch.

METHOD

The electric field due to a patch j is calculated by the expression

$$\begin{split} \widetilde{E}(\widetilde{r}_{0}) &= \frac{\eta_{0}}{i8\pi^{2}} \left[\left(\frac{-1 - i2\pi R/\lambda + 4\pi^{2} (R/\lambda)^{2}}{(R/\lambda)^{3}} \right) \overline{J}_{j} + \left(\frac{3 + i6\pi R/\lambda - 4\pi^{2} (R/\lambda)^{2}}{(R/\lambda)^{5}} \right) \overline{J}_{j} \cdot (\overline{R}/\lambda) (\overline{R}/\lambda) \right] \exp(-i2\pi R/\lambda) \frac{\Delta A_{j}}{\lambda^{2}} , \end{split}$$

where $i = \sqrt{-1}$, $\overline{J}_j = J_{1j}\hat{t}_{1j} + J_{2j}\hat{t}_{2j}$, \overline{R} is the vector from the source to the observation point, and ΔA_j is the area of the patch. For UNERE, J_{1j} and J_{2j} are unity. The expression above for a single patch is obtained from the surface integral in equation (3) in Part I where constant current and one step integration are used for the patch.

CODING

```
UE14 - UE20 z components of patch parameters are adjusted for direct
or reflected fields.
UE25 - UE32 For R < 10^{-10}, the fields are set to zero.
UE34 - UE47 Expression for \vec{E} is evaluated for \vec{J}_j equal to \hat{t}_1 and \hat{t}_2.
UE50 - UE55 For reflection in a perfect ground, \vec{E} is reversed in sign.
UE57 - UE79 For reflection in an imperfect ground, \vec{E} is multiplied by
the reflection coefficients.
```

```
SYMBOL DICTIONARY
```

$$CONST = \frac{10}{8\pi^2}$$

$$CTH = \cos \theta; \quad \theta \text{ is the angle between the reflected ray and the normal to the surface}$$

$$EDP = (\overline{E} \cdot \hat{p})(R_H - R_V)$$

ER = $\frac{\eta_0}{i \, \mathrm{km}^2} \exp(-i \, 2\pi \, \mathrm{R}/\lambda) \, \Delta A_i / \lambda^2$ at UE37 = Q2 $(\hat{t}_{1i} \cdot \bar{R}/\lambda)$ at UE40 = Q2 $(\hat{t}_{2i} \cdot \bar{R}/\lambda)$ at UE44 EXK EYK = \overline{E} due to current \hat{t}_{1j} EZK EXS EYS = \overline{E} due to current \hat{t}_{2j} EZS IPGND = flag to cause computation of reflected field when equal to 2 = \hat{p} ; unit vector normal to the plane of incidence of the PX PY reflected ray Q1 = $\left| \frac{-1 - i2\pi R/\lambda + 4\pi^2 (R/\lambda)^2}{(R/\lambda)^3} \right| (ER)$ $= \left[\frac{3 + i6\pi R/\lambda - 4\pi^2 (R/\lambda)^2}{(R/\lambda)^5}\right] (ER)$ Q2 = R/λ R = R_H RRH $= R_{V}$ $= (R/\lambda)^{3}$ RRV RT RX $\left. \begin{array}{c} RY \\ RZ \end{array} \right\} = \overline{R}/\lambda$ $R2 = (R/\lambda)^{2}$ $S = \Delta A_{j}/\lambda^{2}$ TIXJ $T1YJ = \hat{t}_{1j}$ TIZJ T2XJ T2YJ $= \hat{t}_{21}$ T2Z.I TPI = 2m TT1 $= -2\pi R/\lambda$ = $4\pi 2(R/\lambda)^2$ TT2

 $\begin{array}{l} XOB \\ YOB \\ ZOB \end{array} = field evaluation point \\ ZOB \end{array}$ $\begin{array}{l} XYMAG = magnitude \ of \ the \ projection \ of \ \overline{R}/\lambda \ onto \ the \ x-y \ plane \\ ZR = z \ component \ of \ \overline{R}/\lambda \ after \ reflection \end{array}$

CONSTANTS

 $4.771341188 = \frac{\eta_0}{8\pi^2}$ $6.283185308 = 2\pi$

UNERE

.

1	SUBROUTINE UNERE (XOB, YOB, ZOB)	UN	1
20	The second of the bole to only content in the 11 AND 12	UN	2
		UN	3
5	COMPLEX EXK,EYK,EZK,EXS,EYS,EZS,EXC,EYC,EZC,ZRATI,ZRATI2,T1,ER,Q1,	UN	4
6	102, RRV, RRH, EDP, FRATI	UN	5
7	COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ 1S,EXC,EYC,EZC,RKH,IEXK,IND1,IND2,IPGND		6
8	COMMON /GND/7PATT 7PATT2 CPATT CL CL SODWA DODWD NDIDI KOWAD DDID	UN	7
9	COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR, 1IPERF,T1,T2		8
10	EQUIVALENCE (T1XJ,CABJ), (T1YJ,SABJ), (T1ZJ,SALPJ), (T2XJ,B), (T2Y	UN	9
11	1J, IND1), (T2ZJ, IND2)		10
12	DATA TPI,CONST/6.283185308,4.771341188/	UN	11
13 (UN UN	12 13
14	ZR=ZJ	UN	14
15	TIZR=TIZJ	UN	15
16	T2ZR=T2ZJ	UN	16
17	IF (IPGND.NE.2) GO TO 1	UN	17
18	ZR=ZR	UN	18
19	TIZR=-TIZR	UN	19
20	T2ZR=-T2ZR	UN	20
21 1		UN	21
22	RY=YOB-YJ	UN	22
23	RZ=ZOB-ZR	ŲΝ	23
24 25	R2=RX*RX+RY*RY+RZ*RZ IF (R2.GT.1.E-20) GO TO 2	UN	24
26	EXK=(0, 0.)	UN	25
27	EXK=(0.,0.)	UN	26
28	EZK=(0.,0.)	UN	27
29	EXS=(0.,0.)	UN	28
30	EYS=(0.,0.)	UN UN	29 30
31	EZS=(0, 0, 0)	UN	31
32	RETURN	UN	32
33 2	2 R=SQRT(R2)	UN	33
34	TT1=-TPI*R	UN	34
35	TT2=TT1 • TT1	UN	35
36	RT=R2*R	UN	36
37	ER=CMPLX(SIN(TT1),-COS(TT1))*(CONST*S)	UN	37
38	Q1=CMPLX(TT2-1.,TT1) • ER/RT	UN	38
39	Q2=CMPLX(3TT2,-3.*TT1)*ER/(RT*R2)	UN	39
40	ER=Q2*(T1XJ*RX+T1YJ*RY+T1ZR*RZ)	UN	40
41 42		UN	41
~2 43	EYK=Q1+T1YJ+ER+RY EZK=Q1+T1ZR+ER+RZ	UN	42
44	ER = Q2 * (T2XJ * RX + T2YJ * RY + T2ZR * RZ)	UN	43
45	EXS=Q1 + T2XJ + ER + RX	UN UN	44 45
46	EYS=Q1+T2YJ+ER+RY	UN	46
47	EZS=Q1+T2ZR+ER+RZ	UN	47
48	IF (IPGND.EQ.1) GO TO 6	UN	48
49	IF (IPERF.NE.1) GO TO 3	UN	49
50	EXK=-EXK	UN	50
51	EYK=-EYK	UN	51
52	EZK=EZK	UN	52
53	EXS=-EXS	UN	53
54	EYS=-EYS	UN	54
55 56	EZS=-EZS	UN	55
57 3	GO TO 6 3 XYMAG=SQRT(RX*RX+RY*RY)	UN	56
58	IF (XYMAG.GI.1.E-6) GO TO 4	UN	57
59	PX=0.		58
60	PY=0.	UN UN	59 60
61	CTH=1.	UN	61
62	RRV=(1.,0.)	UN	62
63	GO TO 5	UN	63
64 4	PX=-RY/XYMAG	UN	64

UNERE

65	•	PY=RX/XYMAG		
68	i	CTH=RZ/SQRT(XYMAG•XYMAG+RZ•RZ)	UN	65
67	r	RRV=CSQRT(1,-ZRATI*ZRATI*(1,-CTH*CTH))	UN	66
68	5	RRH=ZRATI*CTH	иU	67
69	,	RRH=(RRH-RRV)/(RRH+RRV)	UN	68
70	1	RRV=ZRATI*RRV	UN	69
71		RRV=-(CTH-RRV)/(CTH+RRV)	UN	70
72		EDP=(EXK*PX+EYK*PY)*(RRH-RRV)	UN	71
73		EXK=EXK*RRV+EDP*PX	UN	72
74		EYK=EYK*RRV+EDP*PY	UN	73
75			UN	74
76			UN	75
		EDP=(EXS*PX+EYS*PY)*(RRH-RRV)	UN	76
77		EXS=EXS*RRV+EDP*PX	UN	77
78		EYS=EYS*RRV+EDP*PY	UN	78
79		EZS=EZS*RRV	UN	79
80	6	RETURN	UN	80
81		END	UN	81-

.

WIRE

PURPOSE

To compute segment coordinates to fill COMMON/DATA/ for a straight line of segments.

METHOD

The formal parameters specify the beginning and ending points of the line and the number of segments into which it is to be divided. The code computes the coordinates of the end points of each segment. The lengths of successive segments are scaled by the factor RDEL if this factor is not one. For NS segments, the length of the first segment is

$$S_{1} = \frac{L(1 - RDEL)}{1 - (RDEL)^{NS}}$$

or

or
$$S_1 = L/NS$$
 if RDEL = 1
where L is the total length of wire.

The radius is RAD for the first segment and is scaled by RRAD.

SYMBOL DICTIONARY

= segment length
= real number equivalent of NS
= initial segment number
= tag number assigned to all segments of the line
= number of segments into which line is divided
= radius of first segment
= segment radius
= scaling factor for segment length
= scaling factor for segment radius
<pre>= scaling factor for segment radius = increment to x coordinates</pre>
= increment to x coordinates
<pre>= increment to x coordinates = x coordinate of first end of segment</pre>

X2(I)	= x coordinate of end 2 of segment I
YD	= increment to y coordinates
YSI	= y coordinate of first end of segment
YS 2	= y coordinate of second end of segment
YWI	= y coordinate of first end of wire
YW 2	= y coordinate of second end of wire
Y 2(I)	= y coordinate of end 2 of segment I
ZD	= increment to z coordinates
ZSI	= z coordinate of first end of segment
ZS 2	= z coordinate of second end of segment
ZWI	= z coordinate of first end of line
ZW 2	= z coordinate of second end of line
Z2(I)	= z coordinate of second end of segment I

1	c c	SUBROUTINE WIRE (XW1,YW1,ZW1,XW2,YW2,ZW2,RAD,RDEL,RRAD,NS,ITG)	WI	1
			wI	2
	i C	SUBROUTINE WIRE GENERATES SEGMENT GEOMETRY DATA FOR A STRAIGHT WIRE OF NS SEGMENTS.	WI	3
	c	MINE OF NS SEGMENTS.	WI	4
6		COMMON /DATA/ LD MI NO N ND MI NO N NO N NO	WI	5
7	•	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP.X(300),Y(300),Z(300),SI(300	WI	6
8	1	1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(2300),WLAM,IPSYM	WI	7
9	I.	DIMENSION X2(1), Y2(1), Z2(1)	WI	8
10	I.	EQUIVALENCE (X2(1),SI(1)), (Y2(1),ALP(1)), (Z2(1),BET(1))	WI	9
11			WI	10
12		N=N+NS	WI WI	11
13		NP=N	WI	12 13
14 15		MP=M	wī	14
16		IPSYM=0 IF (NS.LT.1) RETURN	WI	15
17		XD=XW2-XW1	WI	16
18		YD=YW2-YW1	WI	17
19		ZD=ZW2 - ZW1	WI	18
20		IF (ABS(RDEL-1.).LT.1.E-6) GO TO 1	WI	19
21		DELZ=SQRT(XD+XD+YD+YD+ZD+ZD)	WI	20
22		XD=XD/DELZ	WI	21
23		YD=YD/DELZ	WI	22
24		ZD=ZD/DELZ	WI WI	23
25		DELZ=DELZ*(1RDEL)/(1RDEL**NS)	WI	24 25
26 27		RD=RDEL	wī	26
28	1	GO TO 2 FNS=NS	wī	27
29	•	XD=XD/FNS	WI	28
30		YD=YD/FNS	wī	29
31		ZD=ZD/FNS	WI	30
32		DELZ=1.	WI	31
33		RD=1	WI	32
34	2	RADZ=RAD	WI	33
35		XS1=XW1	WI	34
36		Y 5 1 = YW1	WI WI	35
37			WI	36 37
38		DO 2 T=T21'N	wī	38
39 40		1 (AG(1)=116	wI	39
40		X32=X31+XD*DELZ	WI	40
42		YS2=YS1+YD*DELZ ZS2=ZS1+ZD*DELZ	WI	41
4.3		X(I)=XS1	WI	42
44		Y(I)=YS1	WI	43
45		7(1)=751	WΙ	44
46		X2(T)-x52	WI	45
47		12(1)=152	WI WI	46 47
48			WI	47 48
49		BI(I)=RADZ	WI	49
50		DELZ=DELZ*RD	wī	50
51 52		RADZ=RADZ*RRAD	wī	51
52 53		XS1=XS2 YS1=YS2	νI	52
54	3	751=752	WI	53
55	-	X2(N)=xw2	WI.	54
56		Y2(N)=YW2	NI.	55
57		Z2(N)=7W2	NI	56
58		RETURN	NI NI	57 58
59		ENU	NI	58 59-

ZINT

PURPOSE

To compute the internal impedance of a circular wire with finite conductivity.

METHOD

The internal impedance per unit length of a circular wire is given by

$$Z = \frac{j}{b} \sqrt{\frac{f\mu}{2\pi\sigma}} \left[\frac{Ber(q) + jBei(q)}{Ber'(q) + jBei'(q)} \right],$$

where

 $q = b\sqrt{2\pi f \mu \sigma}$ $\sigma = \text{wire conductivity}$ $\mu = \text{permeability of free space}$ b = wire radius f = frequency $Ber \\Bei \\Bei \\Bei \\Bei$

The term that modifies the diagonal matrix element G_{ii} in the interaction matrix is the total impedance of segment i divided by Δ_i/λ , where Δ_i = segment length. Thus, if G_{ii} is the diagonal matrix element without loading, the new element is

$$G_{ii} - Z\Delta_i/(\Delta_i/\lambda) = G_{ii} - Z\lambda$$
.

Normalized to wavelength, this term is

$$Z_{i} = Z\lambda = \frac{j}{(b/\lambda)} \sqrt{\frac{c\mu}{2\pi(\sigma\lambda)}} \left[\frac{Ber(q) + jBei(q)}{Ber'(q) + jBei'(q)} \right],$$

where

q = $(b/\lambda) \sqrt{2\pi c \mu(\sigma \lambda)}$ c = velocity of light ZINT

The Kelvin functions and derivatives of Kelvin functions are computed from their polynomial approximations.

CODING

```
ZI8 - ZI15 Functions \theta, \phi, f, and g for large argument polynomial
             approximations (see ref. 5).
 ZI19-ZI26 Compute Ber(q) + jBei(q) for q \leq 8.
 ZI27 - ZI31 Compute Ber'(q) + jBei'(q) for q \leq 8.
 ZI32
             [Ber(q) + jBei(q)]/[Ber'(q) + jBei'(q)].
 ZI34
             Ber(q) + jBei(q) for 8 < q \le 110.
             Ber'(q) + jBei'(q) for 8 < q < 110.
 Z135
 ZI36
             [Ber(q) + jBei(q)]/[Ber'(q) + jBei'(q)].
. ZI38
             [Ber(q) + jBei(q)]/[Ber'(q) + jBei'(q)] for 110 < q < \infty.
 ZI39
             Computation of Z.
```

```
SYMBOL DICTIONARY
```

```
BEI
      = Bei(q) or Bei'(q)
      = Ber(q) or Ber'(q)
BER
BR1
      = Ber(q) + jBei(q) or [Ber(q) + jBei(q)]/[Ber'(q) + Bei'(q)]
BR2
    = Ber'(q) + jBei'(q)
CEXP = external routine [exp(complex argument)]
CMOTP = c\mu/(2\pi)
CMPLX = external routine (forms complex number)
      = (1 + j)/\sqrt{2}
CN
D
      = function argument
F(D) = f(D) (see ref. 5)
FJ = j
G(D) = g(D) (see ref. 5)
PH(D) = \phi(X), D = 8/X (see ref. 5)
ΡI
      = π
POT
      = \pi/2
ROLAM = b/\lambda
      = (X/8)^4
S
SIGL = \sigma\lambda
SQRT = external routine (square root)
TH(D) = \theta(X), D = 8/X (see ref. 5)
ΤP
      = 2\pi
```

```
TPCMU = 2\pi c\mu; c = velocity of light
X = q
Y = (X/8)^2
ZINT = Z<sub>i</sub>
```

CONSTANTS

1.5707963 = $\pi/2$ 3.141592654 = π 6.283185308 = 2π 60. = $c\mu/2\pi$ 2.368705E+3 = $2\pi c\mu$ (0., 1.) = j(0.70710678, 0.70710678) = $(1 + j)/\sqrt{2}$ (0.70710678, -0.70710678) = 1imit for $q \neq \infty$ of [Ber(q) + jBei(q)]/[Ber'(q) + jBei'(q)]

Other constants are factors in the polynomial approximations.

ZINT

1		COMPLEX FUNCTION ZINT(SIGL, ROLAM)		
	с	COMPLEX FUNCTION ZINT(SIGE, RULAM)	ΖI	1
	č	TINT COMPLETES THE INTERNAL THREE HOSE OF A SECOND	ΖI	2
	č	ZINT COMPUTES THE INTERNAL IMPEDANCE OF A CIRCULAR WIRE	ΖĪ	3
	č		ΖI	4
6	U	COMPLEX TH, PH, F, G, FJ, CN, BR1, BR2	ΖI	5
7		COMPLEX (C1 CC2 CC4 CC4 CC4 CC4 CC4 CC4 CC4 CC4 CC4	ΖI	6
8		COMPLEX CC1,CC2,CC3,CC4,CC5,CC6,CC7,CC8,CC9,CC10,CC11,CC12,CC13,CC		7
9		DIMENSION FJX(2), CNX(2). CCN(28)	ΖI	8
10		EQUIVALENCE (FJ,FJX) , (CN,CNX) , $(CC1,CCN(1))$, $(CC2,CCN(3))$, $(CC3,C)$	ΖI	9
11		1CN(5), $(CC4, CCN(7))$, $(CC5, CCN(9))$, $(CC6, CCN(11))$, $(CC7, CCN(13))$, $(CC7, CCN(13))$,		10
12		2(CC9 CCN((E))) = (000 000)((77)) = (0000 000)((77))	ZI	11
13		32, CCN(23)). (CC13, CCN(25)), (CC14, CCN(27))	ZI	12
14		DATA PI,POT,TP,TPCMU/3.1415926,1.5707963,6.2831853,2.368705E+3/	ZI	13
15		DATA CMOTP/60.00/,FJX/0.,1./,CNX/.70710678,.70710678/	ZI	14
16		DATA CCN/6.E-7,1.9E-6,-3.4E-6,5.1E-6,-2.52E-5,0.,-9.06E-5,-9.01E-5	ZI	15
17		1,0.,-9.765E-4,.0110486,0110485,0.,3926991,1.6E-6,-3.2E-6,1.17E	21	16
18		2-5,-2,4E-6,3,46E-5,3,38E-5,5,E-7,2,452E-4,-1,3813E-3,1,3811E-3,-6.	Z 1 7 7	17
19		325001E-2,-1.E-7,.7071068,.7071068/	ZI	18
20		TH(D) = ((((CC1 * D + CC2) * D + CC3) * D + CC4) * D + CC5) * D + CC6) * D + CC7	ZI	19 20
21		PH(D)=(((((CCB*D+CC9)*D+CC10)*D+CC11)*D+CC12)*D+CC13)*D+CC14	ZI	21
22		$F(D) = SQRT(POT/D) \cdot CEXP(-CN \cdot D + TH(-8./X))$	ZI	22
23		G(D) = CEXP(CN*D+TH(B./X))/SQRT(TP*D)	ZI	23
24		X=SQRT(TPCMU*SIGL)*ROLAM	ZI	24
25		IF (X.GT.110.) GO TO 2	ZI	25
26		IF (X.GT.8.) GO TO 1	ZI	26
27		Y=X/8.	ZI	27
28		Y=Y*Y	ZI	28
29		S=Y*Y	ZI	29
30		BER=((((((((-9.01E-6*S+1.22552E-3)*S08349609)*S+2.6419140)*S-32.36	ΖI	30
31		13456)*S+113.77778)*S-64.)*S+1.	ΖI	31
32		BEI=(((((((1.1346E-4*S01103667)*S+.52185615)*S-10.567658)*S+72.81	ΖI	32
33		17777)*S-113.77778)*S+16.)*Y	ΖI	33
34		BR1=CMPLX(BER,BEI)	ΖI	34
35		BER=((((((((((((-3.94E-6*S+4.5957E-4)*S02609253)*S+.66047849)*S-6.068	ΖĪ	35
36		11481)*S+14.222222)*S-4.)*Y)*X	21	36
37		BEI=(((((((((((((((((()))))))))))))))))))	ΖI	37
38		17778)*S-10.6666667)*S+.5)*X	ΖI	38
39		BR2=CMPLX(BER,BEI)	ΖI	39
40		BR1=BR1/BR2	ΖI	40
41		GO TO 3	ΖI	41
42	1	BR2=FJ*F(X)/PI	ΖI	42
43		BR1=G(X)+BR2	ΖI	43
44		BR2=G(X)*PH(8./X)-BR2*PH(-8./X)	ZI	44
45		BR1=BR1/BR2	ZI	45
46	2		ZI	46
47		BR1=CMPLX(.70710678,70710678)	ZI	47
48 49	J	ZINT=FJ*SQRT(CMOTP/SIGL)*BR1/ROLAM	ZI	48
49 50		RETURN END	ZI	49
50			ΖI	50-

Section III Common Blocks

This section discusses each labeled common block which is used in the NEC-2 code. For each common block, a list of the routines in which it is used is given along with a definition of the variables used in conjunction with the common block. The common blocks are presented in alphabetical order.

COMMON/ANGL/ SALP(300)

Routines Using /ANGL/

CABC, CMSS, CMSW, CMWS, CMWW, DATAGN, ETMNS, FFLD, GFIL, GFLD, GFOUT, MOVE, NEFLD, NHFLD, PATCH, QDSRC, REFLC

/ANGL/ Parameters for Wire Segments

SALP(I) = sin (α), where α = elevation angle of segment I (see figure 11)

/ANGL/ Parameters for Surface Patches

SALP(LD - I + 1) = +1 if $\hat{t}_1 \times \hat{t}_2 = \hat{n}$ for patch I, or -1 if $\hat{t}_1 \times \hat{t}_2 = -\hat{n}$ for patch I

The second case occurs when the patch has been produced by reflection of a patch originally input.

COMMON/CMB/ CM(4000)

Routines Using /CMB/

MAIN, GFIL, GFOUT

The interaction matrix is stored in array CM. If the matrix is too large to fit in CM, then pairs of blocks of the matrix are stored in CM as they are needed.

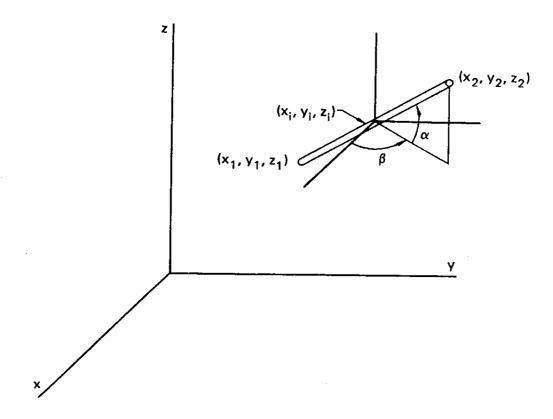


Figure 11. Coordinates of Segment i.

<u>COMMON/CRNT</u>/AIR(300), AII(300), BIR(300), BII(300), CIR(300), CII(300) CUR(900)

Routines Using /CRNT/

MAIN, CABC, FFLD, GFLD, NEFLD, NETWK, NHFLD

/CRNT/ Parameters for Wire Segments

Subroutine CABC fills the first six arrays in /CRNT/ with the real and imaginary parts of the constants in the current expansion of each segment,

$$I_{i}(s) = A_{i} + B_{i} \sin [k(s - s_{i})] + C_{i} \cos [k(s - s_{i})]$$

where $s = s_i$ at the center of segment i. Except during intermediate calculations for non-radiating networks, the current basis-function amplitudes are computed and stored in array CUR. CABC replaces the basis function amplitudes in CUR by the current at the center of each segment, $(A_i + C_i)$. For i = I,

AIR(I) AII(I)	= A _i /λ (real, imaginary)
BIR(1)	$= B_i / \lambda$
BII(I) CIR(I)	$= C_i / \lambda$
CII(I)	L
CUR(I)	= amplitude of i th basis function going into CABC or $(A_i + C_i)/\lambda$ at end of CABC

/CRNT/ Parameters for Surface Patches

Surface current components are stored in CUR. Before CABC is called, the surface current strengths in directions \hat{t}_1 and \hat{t}_2 on patch i are stored in CUR(N + 2I - 1) and CUR(N + 2I), respectively where N is the number of segments. After CABC, the x, y and z components of surface current are stored in CUR(N + 3I - 2), CUR(N + 3I - 1) and CUR(N + 3I), respectively.

<u>COMMON/DATA/</u> LD, N1, N2, N, NP, M1, M2, M, MP, X(300), Y(300), Z(300), SI(300), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(300), WLAM, IPSYM

Routines Using /DATA/

MAIN, ARC, CABC, CMNGF, CMSET, CMSS, CMSW, CMWS, CMWW, CONECT, DATAGN, ETMNS, FFLD, FFLDS, GFIL, GFLD, GFOUT, ISEGNO, LOAD, MOVE, NEFLD, NETWK, NFPAT, NHFLD, PATCH, QDSRC, RDPAT, REFLC, SBF, TBF, TRIO, WIRE

/DATA/ Parameters for Wire Segments

The arrays in /DATA/ are used to store the parameters defining the segments. Two forms of the segment parameters are used.

During geometry input in routines ARC, CONECT, DATAGN, MOVE, REFLEC and WIRE, the coordinates of the segment ends are stored. The symbol meanings in the geometry routines are:

 $X(1) = X_1$ $Y(1) = Y_1$ $Z(1) = Z_1$ SI(1) = X_2 [equivalenced to X2(1)] ALP(1) = Y_2 [equivalenced to Y2(1)] BET(1) = Z_2 [equivalenced to Z2(1)]

where X_1 , Y_1 , Z_1 are the coordinates of the first end of the segment, and X_2 , Y_2 , Z_2 are the coordinates of the second end, as illustrated in figure 11. Coordinates may have any units but must be scaled to meters before data input is ended, since the main program requires meters.

In the main program, the segment data is converted to: the coordinates of the segment center, components of the unit vector in the direction of the segment, and the segment length. The symbol meanings after the geometry section are:

 $\begin{array}{l} X(I) \\ Y(I) \\ Z(I) \end{array} = X_{i}, Y_{i}, Z_{i} \text{ (see figure 11.)} \\ SI(I) = segment length \\ ALP(I) = \cos \alpha \cos \beta \text{ [equivalenced to CAB(I)]} \\ BET(I) = \cos \alpha \sin \beta \text{ [equivalenced to SAB(I)]} \end{array}$

The z component of the unit vector in the direction of the segment, sin α , is stored in /ANGL/.

The other symbol meanings in /DATA/ for segments are:

BI(I) = radius of segment I

ICON1(I) = connection number for end 1 of segment I. If k is a positive integer less than 10,000, the meaning of ICON1 is as follows.

ICON1(I) = 0: no connection.

ICON1(I) = ±k: end 1 connects to segment k. If more than one segment connects to end 1 of segment I, then k is the number of the next connected segment encountered by starting at I and going through the list of segments in cyclic order. ICON1(I) = +k: parallel reference directions with end 2 of the other segment connecting to end 1 of segment I. ICON1(I) = -k: opposed reference directions.

ICON1(I) = I: end 1 of segment I connects to a ground plane.

-358-

ICON1(I) = 10,000 +k: end 1 of segment I connects to a surface with the 4 patches around the connection point numbered k, k + 1, k + 2 and k + 3.

- ICON2(I) = connection number for end 2 of segment I.
- ITAG(I) = tag number of segment I. This number is assigned during structure input to permit later reference to the segment without knowing the segment index I in the data arrays.
- ICONX(I) = equation number for the new basis function when segment I
 is in a numerical Green's function file and a new segment
 connects to segment I modifying the old basis function.

/DATA/ Parameters for Surface Patches

Patch parameters are set in subroutine PATCH. The input parameters for a patch are the coordinates of the patch center, patch area, and orientation of the outward, normal unit vector, \hat{n} . The parameters stored in /DATA/ are the center point coordinates, area, and the components of the two surface unit vectors, \hat{t}_1 and \hat{t}_2 . The vector \hat{t}_1 is parallel to a side of the triangular, rectangular, or quadrilateral patch. For a patch of arbitrary shape, it is chosen by the following rules:

For a horizontal patch, $\hat{t}_1 = \hat{x}$; For a nonhorizontal patch, $\hat{t}_1 = (\hat{z} \times \hat{n})/|\hat{z} \times \hat{n}|$; \hat{t}_2 is then chosen as $\hat{t}_2 = \hat{n} \times \hat{t}_1$

With J = LD + 1 - I, the parameters for patch I are stored as follows. $\begin{array}{l}
X(J) \\
Y(J) \\
Z(J) \\
Z(J) \\
SI(J) \\
ALP(J) \\
BET(J) \\
ECON1(J) \\
ICON2(J) \\
ICON2(J) \\
ITAG(J) \\
Ex, y, and z components of <math>\hat{t}_{1}$ (equivalenced to T1X, T1Y, T1Z) $\begin{array}{l}
ECON1(J) \\
ICON2(J) \\
ITAG(J) \\
Ex, y, and z components of <math>\hat{t}_{2}$ (equivalenced to T2X, T2Y, T2Z) BI(J) = patch area
\end{array}

```
Scalar variables in /DATA/ are:
IPSYM = symmetry flag. The meanings of IPSYM are:
      IPSYM = 0: no symmetry
     IPSYM > 0: plane symmetry
     IPSYM < 0: cylindrical symmetry
     IPSYM = 2: plane symmetry about Z = 0
      IPSYMI > 2:
                         structure has been rotated about x or y axis. If
                         ground plane is indicated by IGND \neq 0 in the call
                         to subroutine CONECT and IPSYM = 2, symmetry about a
                         horizontal plane is removed by multiplying NP by 2.
                         If |IPSYM| > 2 and IGND \neq 0, all symmetry is
                         removed by setting NP = N and IPSYM = 0 in CONECT.
     LÐ
            = length of arrays in /DATA/
     N 1
            = number of segments in NGF. If NGF is not used N1 = 0
     N2
            = N1 + 1
     N
            = total number of segments
     NP
            = number of segments in a symmetric cell
            = number of patches in NGF. If NGF is not used MI = 0
     M1
     M2
            = M1 + 1
     М
            = total number of patches
            = number of patches in a symmetric cell
    MP
     WLAM = wavelength in meters
```

COMMON/DATAJ/ S, B, XJ, YJ, ZJ, CABJ, SABJ, SALPJ, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND

Routines Using /DATAJ/

CMNGF, CMSET, CMSS, CMSW, CMWS, CMWW, EFLD, HINTG, HSFLD, NEFLD, NHFLD, PCINT, QDSRC, SFLDS, UNERE

/DATAJ/ is used to pass the parameters of the source segment or patch to the routines that compute the E or H field and to return the field components.

/DATAJ/ Parameters for Wire Segments

S	=	segment	length
в	=	segment	radius

XJ) YJ = coordinates of segment center 23) CABJ = x, y, and z, respectively, of the unit vector in the direction SABJ SALPJ of the segment EXK EYK = x, y, and z components of the E or H field due to a constant EZK. current EXSI EYS = x, y, and z components of the E or H field due to a sin ks EZS current EXC) EYC = x, y, and z components of the E or H field due to $\cos ks$ EZC current ккн = minimum distance for use of the Hertzian dipole approximation for computing the E field of a segment I E XK = flag to select thin wire approximation or extended thin wire approximation for E field (IEXK = 1 for extended thin wire approximation) IND1 = flag to inhibit use of the extended thin wire approximation on end 1 of the source segment. This is used when there is a bend or change in radius at end 1. IND1 = 2 inhibits the extended thin wire approximation. = flag to inhibit use of the extended thin wire approximation on IND2 end 2 of the source segment IPGND = not used /DATAJ/ Parameters for Surface Patches S = patch area in units of wavelength squared = x component of \hat{t}_2 for the patch В

YJ = x, y, and z components of the position of the patch center 2J

XJ)

CABJ SABJ = x, y, and z components of \hat{t}_1 SALPJ = x, y, and z components of \overline{E} or \overline{H} due to a current with unit EXK) magnitude in the direction \hat{t}_1 on the patch EYK EZK EXS) = \vec{E} or \vec{H} due to a current \hat{t}_{2} on the patch EYS EZS EXC) = not used; may serve as intermediate variables in some routines EYC EZC = y component of \hat{t}_2 IND1 = z component of \hat{t}_2 1ND2 IPGND = flag to request calculation of the direct field or field reflected from the ground (two for ground)

<u>COMMON/FPAT/</u> NTH, NPH, IPD, IAVP, INOR, IAX, THETS, PHIS, DTH, DPH, RFLD, GNOR, CLT, CHT, EPSR2, SIG2, IXTYP, XPR6, PINR, PNLR, PLOSS NEAR, NFEH, NRX, NRY, NRZ, XNR, YNR, ZNR, DXNR, DYNR, DZNR

Routines Using /FPAT/

MAIN, NFPAT, RDPAT Variables are defined in subroutine descriptions.

<u>COMMON/GGRID/</u> AR1(11, 10, 4), AR2(17, 5, 4), AR3(9, 8, 4), EPSCF, DXA(3), DYA(3), XSA(3), YSA(3), NXA(3), NYA(3)

Routines Using /GGRID/

MAIN, GFIL, GFOUT, INTRP Variables are defined under subroutine INTRP.

COMMON/GND/ ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR, IPERF, T1, T2

Routines Using /GND/

MAIN, CMSW, EFLD, ETMNS, FFLD, GFIL, GFOUT, HINTG, HSFLD, NEFLD, RDPAT, SFLDS, UNERE

/GND/ contains parameters of the ground including the two-medium ground and radial-wire ground-screen cases. The symbol definitions are as follows.

$$ZRATI = [\varepsilon_r - j\sigma/\omega\varepsilon_0]^{-1/2}$$

where σ is ground conductivity (mhos/meter), $\epsilon_{_{
m r}}$ is the relative dielectric constant, $\epsilon_0^{}$ is the permittivity of free space (farads/meter), and $\omega = 2\pi f$. ZRATI2 = same as ZRATI, but for a second ground medium = $(k_1^2 - k_2^2)/(k_1^2 + k_2^2)$ where $k_2 = \omega \sqrt{\mu_0 \epsilon_0}$ and $k_1 = k_2/ZRATI$ FRATI CL = distance in wavelengths of cliff edge from origin CH = cliff height in wavelengths SCRAWL = length of wires in radial-wire ground screen (normalized to wavelength) = radius of wires in screen in wavelengths SCRWR = number of radials in ground screen; zero implies no screen NRADL (input quantity, GN card) = ground flag (=1, no ground; =2, ground present) KSYMP = input integer flag on RP card; specifies type of field I FAR computation or type of ground system for far fields = flag to select type of ground (see GN card) I PERF T1, T2 = constants for the radial-wire ground-screen impedance

COMMON/GWAV/ U, U2, XX1, XX2, R1, R2, ZMH, ZPH

Routines Using /GWAV/ MAIN, GFLD, GWAVE, SFLDS

Symbol Definitions: $U = (\varepsilon_r - j\sigma/\omega\varepsilon_0)^{-1/2}$ $\varepsilon_r = relative \ dielectric \ constant; \ \sigma = conductivity \ of ground$

U 2	$= u^2$
XX1, XX2	: defined in GFLD and SFLDS
RI	= distance from current element to point at which field is
	evaluated
K 2	= distance from image of current element to point at which
	field is evaluated
Zмн	= Z - Z'
2 PH	= Z + Z' where Z is height of the field evaluation point and
	Z' is the height of the current element

COMMON/INCOM/ XO, YO, ZO, SN XSN, YSN, ISNOR

Routines Using /INCOM/

EFLD, SFLDS

Symbol Definitions:

XO, YO, ZO) = point at which field due to ground will be evaluated
SN	= cos α (see Figure 11)
XSN	$= \cos \beta$
YSN	= sin ß
ISNOR	= 1 to evaluate field due to ground by interpolation
	O to use Norton's approximation

COMMON/MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, ICASX, NBBX, NPBX, NLBX, NBBL NPBL, NLBL

Routines Using /MATPAR/

MAIN, CMNGF, CMSET, FACGF, FACIO, FACTRS, FBLOCK, FBNGF, GFIL, GFOUT, LFACTR, LTSOLV, LUNSCR, REBLK, SOLGF, SOLVES

/MATPAR/ contains matrix blocking parameters for cases requiring file storage of the matrix. Symbol definitions in /MATPAR/ are as follows.

ICASE = storage mode for primary matrix, defined as follows.

l unsymmetric matrix fits in core

- 2 symmetric matrix fits in core
- 3 unsymmetric matrix out of core
- 4 symmetric matrix out of core, but submatrices fit in core

5 symmetric matrix out of core, submatrices also out of core

N B LOP	KS = number of blocks of columns of the computed matrix (in core
	matrix, NBLOKS = 1)
NPBLK	K = number of columns in the first (NBLOKS - 1) blocks
NLASI	r = number of columns in the last block
NBLSY	YM) = same function as the preceding three variables;
NPSYM	however, in this case the parameters refer to
NLSYM	1) the submatrix in the symmetry case
1 AM 1	= storage reserved in CM for the primary NGF matrix A or a block
	of A (number of complex numbers)
ICASX	<pre>K = storage mode for NGF solution (see Section VII)</pre>
NBBX	= number of blocks in matrix B stored by blocks of rows
NPBX	= number of rows in a block of B stored by rows
NLBX	= number of rows in the last block of B
NBBL	= number of blocks in matrix C stored by rows (and number of
	blocks in B stored by columns)
NPBL	= number of rows (columns) in a block of C (B)
NLBL	= number of rows (columns) in the last block of C (B)

<u>COMMON/NETCX/</u> ZPED, PIN, PNLS, NEQ, NPEQ, NEQ2, NONET, NTSOL, NPRINT, MASYM, ISEG1(30), ISEG2(30), X11R(30), X11I(30), X12R(30), X12I(30), X22R(30), X22I(30), NTYP(30)

Routines Using /NETCX/ MAIN, NETWK Variables are defined under subroutine NETWK.

COMMON/SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ

Routines Using /SAVE/

MAIN, GFIL, GFOUT, RDPAT

Symbol Definitions:

ΙP	= vector of indices of pivot elements used in factoring the matrix
ксом	= number of CM or CE data cards (maximum 5)
Сом	= array storing the contents of CM or CE cards

EPSR = relative dielectric constant of the ground SIG = conductivity of the ground SCRWLT = length of radials in radial wire ground screen approximation (meters) SCRWRT = radius of wires in radial wire ground screen approximation (meters) FMHZ = frequency in MHz

COMMON/SCRATM/D(600)

in routines CMSET, FACTR, LFACTR

COMMON/SCRATM/Y(600)

in routines LTSOLV, SOLGF, SOLVE, SOLVES

COMMON/SCRATM/GAIN(1200)

in routine RDPAT

Symbol Definitions:

D and Y =

complex vectors used in matrix decomposition and solution

GAIN = array to store antenna gain for subsequent normalization

<u>COMMON/SEGJ</u>/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IPCON(10), NPCON

Routines Using /SEGJ/

MAIN, CABC, CMNGF, CMSET, CMSW, CMWS, CMWW, CONECT, QDSRC, SFLDS, TBF, TRIO

/SEGJ/ is used to store the parameters defining current expansion functions. The equations for the current expansion functions are given in Section III-1 of Part I. The ith current expansion function consists of a center section on segment i and branches on each segment connected to segment i. On segment j, where j is i or the number of a segment connected to segment i, the ith expansion function is

$$f_{j}^{i}(s) = A_{j}^{i} + B_{j}^{i} \sin [k(s - s_{j})] + C_{j}^{i} \cos [k(s - s_{j})]$$

with the constants defined in Part I to match conditions on the current. A superscript i has been added to indicate the number of the current expansion function.

When subroutine TBF is called for expansion function i, it locates each segment connected to segment i and stores the segment number, j, in array JCO. TBF also computes the constants A_j^i , B_j^i , and C_j^i for segment j and stores them in AX, BX, and CX, respectively.

After all connected segments have been found, i is stored in the next location in JCO, and A_i^i , B_i^i , and C_i^i are stored in the corresponding locations in AX, BX, and CX.

/SEGJ/ is also used by subroutine TRIO. When TRIO is called for segment j, it locates each segment i connected to segment j and stores i in array JCO. TRIO calls SBF to compute the constants A_j^i , B_j^i , and C_j^i for the branch of expansion function i that extends onto segment j and stores these in AX, BX, and CX. The total number of entries, including i = j, is stored in JSNO. The remaining parameters are used with the NGF solution.

- ISCON(I) = number of the segment in the NGF file having equation number I in the set of equations for modified basis functions. This is used when a new segment or patch connects to the NGF segment
- NSCON = number of entries in ISCON
- IPCON(I) = number of the patch in the NGF file having equation number I
 in the set of equations for modified patch basis functions.
 This is used when a new segment connects to the NGF patch
- NPCON = number of entries in IPCON

COMMON/SMAT/ SSX(16,16)

Routines Using /SMAT/

CMSET, FBLOCK GFIL, GFOUT, SOLVES

The array SSX is described under subroutine FBLOCK. In some copies of NEC-2 the variable name S is used in FBLOCK rather than SSX.

COMMON/TMH/ ZPK, RHKS

Routines Using /TMH/

GH, HFK

/TMH/ is used to pass values from HFK to GH. The variables ZPK and RHKS are defined in the discussion of subroutine HFK.

COMMON/TMI/ ZPK, RKB2, IJX

Routines Using /TMI/

EKSC, EKSCX, GF

/TMI/ is used to pass values from EKSC or EKSCX to GF. The meanings of the variables are listed in subroutines EKSC and EKSCX.

COMMON/VSORC/ VQD(10), VSANT(10), VQDS(10), IVQD(10), ISANT(10), IQDS(10), NVQD, NSANT, NQDS

Routines Using /VSORC/

MAIN, CABC, COUPLE, ETMNS, NETWK, QDSRC

The arrays in /VSORC/ contain the strengths and locations of voltage sources on wires. Separate arrays are used for applied-field voltage sources and current-derivative discontinuity voltage sources. The variables are defined as follows.

ISANT(I)	= number of the segment on which the I th applied-field
	source is located
IVQD(I)	= IQDS(I) = number of the segment on end 1 of which the I th
	current-slope discontinuity voltage source is located
VQD(1)	= VQDS(I) = voltage of the I th current-slope discontinuity
	source
VSANT(1)	= voltage of the I th applied-field voltage source

NSANT = number of applied-field voltage sources

NVQD = NQDS = number of current-slope discontinuity voltage sources NVQD, IVQD, and VQD are set in MAIN from the input data. NQDS, IQDS, and VQDS are set in subroutine QDSRC. The latter were included to allow for current-slope discontinuities other than voltage sources, such as lumped loads. Loading by this means has not been implemented in NEC-2 however.

COMMON/YPARM/ NCOUP, ICOUP, NCTAG(5), NCSEG(5), Y11A(5), Y12A(20)

Routines Using /YPARM/

MAIN, COUPLE

Symbol Definitions:

NCOUP	= number of segments between which coupling will be computed
ICOUP	= number of segments in the coupling array that have been
	excited. When ICOUP = NCOUP subroutine COUPLE completes the
	coupling calculation
NCTAG(I)	= tag number of segment I
NCSEG(I)	number of segment in set of segments having tag NCTAG(I)
Y11A(I)	= self admittance of I th segment specified
Y12A(I)	= mutual admittances stored in order (1,2), (1,3), (2,3),
	(2,4), etc.

COMMON/ZLOAD/ ZARRAY(300)

Routines Using /ZLOAD/

MAIN, CMNGF, CMSET, GFIL, GFOUT, LOAD, QDSRC

ZARRAY(I) = $Z_I/(\Delta_I/\lambda)$, where Z_I is the total impedance on segment I, Δ_I is the length of segment I, and λ is the wavelength.

Section IV System Library Functions Used by NEC

ABS(X)	= absolute value of X
AIMAG(Z)	= imaginary part of the complex number Z; result is real
AINT(X)	= integer truncation; result is real
ALOG(X)	= natural log of X
ALOG10(X)	= log to the base ten of X
ASIN(X)	= arcsine of X; result in radians
ATAN(X)	<pre>= arctangent of X; result in radians</pre>
$\text{ATAN2}(X_1, X_2)$	= arctangent of X_1/X_2 ; result in radians covering all four
	quadrants
CABS(Z)	= magnitude of the complex number, Z
CEXP(Z)	= complex exponential (e ^Z)
$CMPLX(X_1, X_2)$	= formation of a complex number, $Z = X_1 + jX_2$
	= conjugate of the complex number Z
COS(X)	= cosine of X
CSQRT(Z)	= square root of a complex number, \sqrt{Z}
FLOAT(K)	= real number equivalent of integer K
IABS(K)	= absolute value of integer K
INT(X)	= X truncated to an integer
REAL(Z)	= real part of the complex number Z
SIN(X)	= sine of X
SQRT(X)	= square root of X
TAN(X)	= tangent of X

.

Section V Array Dimension Limitations

Array dimensions in the program limit the structure model in various ways. Any of these limits may be increased if necessary at the expense of core storage capacity, which may require reducing other array dimensions. The limits imposed by array dimensions are described below.

In-Core Matrix Storage, $I_r = 4000.1$

Arrays:

COMMON/CMB/ CM(I_r)

Limit constant:

IRESRV = I_r at MA68 of MAIN

 I_r is the number of words of core available for storage of the interaction matrix. The complete matrix will fit in core storage if (N + 2M) × (NP + 2MP) is not greater than I_r . For out-of-core solution, I_r must be at least 2(N + 2M) and should be as large as possible to minimize file manipulation.

Maximum Segments and Patches

Minimum Dimensions for N segments and M patches: COMMON/DATA/ X(N + M), Y(N + M), Z(N + M), SI(N + M), BI(N + M), ALP(N + M), BET(N + M), ICON1(N + M), ICON2(N + M), ITAG(N + M), ICONX(N + M) COMMON/CRNT/AIR (N), AII(N), BIR(N), BII(N), CIR(N), CII(N), CUR(N + 3M) COMMON/ANGL/ SALP(N + M) COMMON/ANGL/ SALP(N + M) COMMON/SCRATM/ D(N + 2M) or Y(N + 2M)

MAIN: IX(N + 2M)

SUBROUTINE NETWA: RHS(N + 3M)

Limit Constant:

LD = N + M at MA66 of MAIN

All segments and patches resulting from reflection or rotation of a symmetric structure must be included in determining the limiting structure size.

Maximum Number of Non-radiating Networks, $N_n = 30$.

Arrays:

COMMON/NETCX/: ISEG1(N_n), ISEG2(N_n), X11R(N_n), X11I(N_n), X12R(N_n), X12I(N_n), X22R(N_n), X22I(N_n), NTYP(N_n)

SUBROUTINE NETWK: RHNT(N_n), IPNT(N_n), NTEQA(N_n), NTSCA(N_n), RHNX(N_n), CMN(N_n , N_n)

Limit Constants:

NETMX = N_n at MA63 of MAIN NDIMN = N_n at NT22 of NETWK NDIMNP = N_n + i at NT22 of NETWK

 N_n is the limit for either the number of networks (including transmission lines) or the number of segments having one or more network ports connected, whichever is greater. When relative driving point matrix asymmetry is computed, N_n must also be greater than or equal to the sum of the number of segments with network ports connected plus the number of segments with voltage sources.

Arrays:

 $COMMON/SMAT/S(N_p, N_p)$

 $N_{\rm D}$ limits the number of symmetric cells in a structure. The number of symmetric cells is equal to the ratio of N to NP in COMMON/DATA/.

<u>Maximum Number of Segments Joined at Junctions</u>, $N_j = 30$ If N^- and N^+ are the numbers of segments connected to end 1 and end 2 of a segment, respectively, then the dimensions in COMMON/SEGJ/, N_{i} , must be at least $N^{-} + N^{+} + 1$.

Array:

COMMON/SEGJ/ $AX(N_{j})$, $BX(N_{j})$, $CX(N_{j})$, $JCO(N_{j})$, JSNO

Limit Constants:

 $JMAX = N_{i}$ at SB6 in SBF $JMAX = N_{i}$ at TB8 in TBF $JMAX = N_{i}$ at TR8 in TRIO

Maximum Number of Voltage Sources, $N_v = 30$.

Arrays:

COMMON/VSORC/ VQD(N_v), VSANT(N_v), VQDS(N_v), IVQD(N_v), ISANT(N_v), IQDS(N_v)

Limit Constant:

NSMAX = N_{y} at MA63 of MAIN

A model may use up to N applied field voltage sources and up to N $_{\rm v}$ current slope discontinuity voltage sources.

Maximum Number of Loading Cards, $N_1 = 30$

Arrays:

MAIN: $LDTYP(N_1)$, $LDTAG(N_1)$, $LDTAGF(N_1)$, $LDTAGT(N_1)$, $ZLR(N_1)$, $ZLI(N_1)$, $ZLC(N_1)$

Limit Constants:

LOADMX = N at MA63 of MAIN Then the MGF option is used only new loading cards are counted, not those used in generating the NGF file.

Number of Comment Cards Saved, $N_c = 5$

Arrays:

CUMMON/SAVE/: COM(13,N_)

Limit Constant:

Constants at MA71 of MAIN

Any number of comment cards may be placed at the beginning of a data deck and will be printed in the output. Only N_c of the cards will be saved in array COM for later use in labeling plots, however. The first N_c - 1 comment cards and the last comment card will be saved.

Maximum Field Points for Normalized Gain, $N_g = 1200$.

Arrays:

COMMON/SCRATM/ GAIN(N_o)

Limit Constant:

NORMAX = N_g at RD22 of SUBROUTINE RDPAT

N is the maximum number of field points from a single RP data card that can be stored for output in normalized form or for plotting if plotting is

implemented. If an RP card requesting more than N_g points calls for normalized gain, the gain will be computed and printed at all requested angles, but only the first N_g gains will be stored and normalized.

COMMON/SCRATM/ GAIN occurs in SUBROUTINE RDPAT. COMMON/SCRATM/ D and COMMON/SCRATM/ Y occur in certain other routines where D and Y are complex (see "Maximum Segments and Patches"). GAIN, D, and Y should be dimensioned so that each common statement contains the same number of words.

Maximum Number of Frequencies for Normalized Impedance or Maximum Number of Angles for Which Received Signal Strength Is Stored, $N_f = 200$

Array:

MAIN: FNORM(N_f)

Limit Constant:

NORMF = N_{f} at MA63 of MAIN

The maximum number of frequencies for which input impedance may be stored and normalized is $N_f/4$, since the real and imaginary impedance and magnitude and phase are each stored. The receiving current can be stored for up to N_f angles.

Maximum Number of Points in Coupling Calculation, $N_c = 5$.

The maximum number of segments among which coupling can be computed (CP cards) is $N_{\rm g}$.

COMMON/YPARM/: NCTAG(N_c), NCSEG(N_c), Y11A(N_c), Y12A($N_c^2 - N_c$)

Limit Constants:

```
Constants at MA207 and MA212 of MAIN should equal N_{c}
```

Maximum Number of NGF Segments to Which New Segments or Patches Connect, $N_s = 50$

```
COMMON/SEGJ/: ISCON(N<sub>s</sub>)
```

Limit Constant:

 $NSMAX = N_{g}$ at CN13 of CONECT

Maximum Number of NGF Patches to Which New Segments Connect, $N_p = 10$.

COMMON/SEGJ/: IPCON(N_D)

Limit Constant: NPMAX = N_{D} at CN13 of CONECT

Section VI Overview of Numerical Green's Function Operation

NEC includes a provision to generate and factor an interaction matrix and save the result on a file. A later run, using the file, may add to the structure and solve the complete model without unnecessary repetition of calculations. This procedure is called the Numerical Green's Function (NGF) option since the effect is as if the free space Green's function in NEC were replaced by the Green's function for the structure on the file. The NGF is particularly useful for a large structure, such as a ship, on which various antennas will be added or modified. It also permits taking advantage of partial symmetry since a NGF file may be written for the symmetric part of a structure, taking advantage of the symmetry to reduce computation time. Unsymmetric parts can then be added in a later run.

For the NGF solution the matrix is partitioned as

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \end{bmatrix},$$

where A is the interaction matrix for the initial structure, D is the matrix for the added structure, and B and C represent mutual interactions. The current is computed as

$$I_{2} = \left[D - CA^{-1}B \right]^{-1} \left[E_{2} - CA^{-1}E_{1} \right] ,$$

$$I_{1} = A^{-1}E_{1} - A^{-1}BI_{2} ,$$

after the factored matrix A has been read from the NGF file along with other necessary data. Since the LU decomposition is obtained in NEC rather than the inverse, the multiplication by A^{-1} is accomplished by using the solution procedure in subroutine SOLVE on each column in the matrix to the right of A^{-1} .

To use the NGF option the parameters of the fixed, or NGF, part of the model are defined in the first run. A WG data card causes the matrix A to be computed (CMSET), factored (FACTRS), and written to file TAPE20 by subroutine GFOUT. Other necessary data, such as segment and patch coordinates, frequency, loading, and ground parameters, are also written to TAPE20.

When the NGF file, TAPE20, is used the data are read into the usual arrays by subroutine GFIL and new segments and patches are added to the arrays in COMMON/DATA/. Subroutine CMNGF is then called to compute the matrix elements in B, C, and D. FACGF computes $A^{-1}B$, storing it in place of B, and computes $(D - CA^{-1}B)$, factors it into L and U parts, and stores the result in place of D. For each excitation E_1 and E_2 , SOLGF completes the procedure of solving for I_1 and I_2 .

The procedure is complicated by the connection of new segments or patches to NGF segments or patches. A connection to a segment modifies the current basis function (see Section III.1 of Part I). Since the elements in A cannot be changed, a modified basis function must be treated as a new basis function with a new column added to B and D and the new basis function amplitude added to the end of I_2 . The amplitude of the original basis function is set to zero by adding a row containing all zeros except for a one in the column of C corresponding to the modified basis function. Since the segment is not modified the boundary condition equation is not altered in this case.

When a new segment connects to a NGF patch the patch must be divided into four new patches, after the user defined patches, requiring eight new rows and columns in B, C, and D. Two additional rows are added to set the two current components on the old patch to zero. Since the old patch is replaced by the four new patches, the condition on the field at the center of the patch should be removed. This is done by adding two new columns each containing all zeros except for a one in the row of the equation to be removed.

The matrix structure is further complicated by the division of each submatrix into sections for segment-to-segment, patch-to-patch, segment-to-patch and patch-to-segment interactions. The matrix structure is shown in Figure 12, where the subscript w denotes wire segments and s denotes surface patches. The elements of B'_{ww} and B'_{gw} are the E fields and H fields due to modified basis functions in the NGF section. Each column of B'_{ss} and row of C'_{ww} and C'_{ss} contains 0's and a single 1.

The subroutine ETMNS fills the excitation array with the E fields illuminating all segments, followed by the H fields on patches. These elements are reordered in SOLGF to correspond to the matrix structure. After

-378-

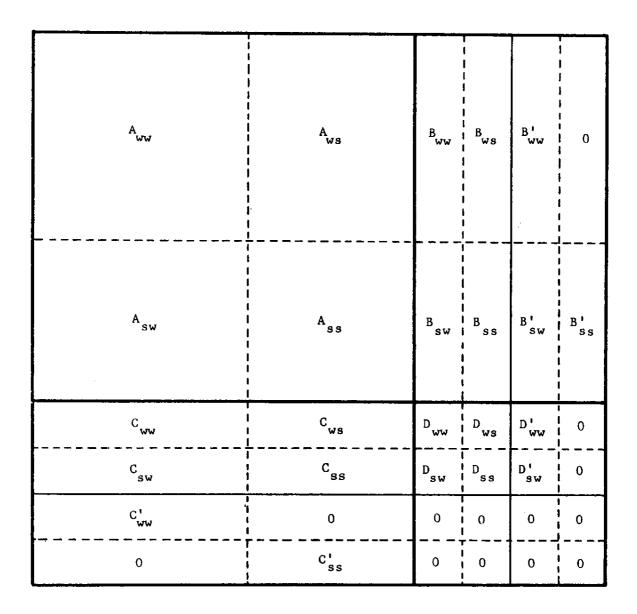


Figure 12. Matrix Structure for the NGF Solution

the solution this reordering is reversed in SOLGF to put basis function amplitudes for segments first, followed by those for patches. If symmetry is used in the NGF section the matrix A is structured as submatrices for the symmetric sections. Each submatrix contains elements for segments and patches in that section, with the order as shown for A in Figure 12. In this case the excitation and solution vectors are ordered in SOLVES to correspond to the submatrix structure.

Section VII Overview of Matrix Operations Using File Storage

File storage is used when the matrix size exceeds the length of the array CM in COMMON/CMB/. For the basic solution (not NGF) there are five matrix storage modes associated with the integer ICASE as follows:

ICASE	Matrix Storage
1	Matrix fits in CM; no structure symmetry
2	Matrix fits in CM; structure symmetry used
3	Matrix stored on file; no symmetry
4	Matrix stored on file; symmetry; each
	submatrix fits into CM for LU decomposition
5	Matrix stored on file; symmetry;
	submatrices do not fit into CM.

For case 3 the matrix is initially written on file 11 by blocks of rows. The block size is chosen in subroutine FBLOCK so that two blocks will fit into CM for the Gauss elimination procedure. The block size and number of blocks is set by the parameters NBLOKS, NPBLK, and NLAST in COMMON/MATPAR/.

Subroutine FACIO reads file 11 and writes file 12 using 13 and 14 for scratch storage. LUNSCR then reads 12 and writes the blocks of the factored matrix on file 13 in forward order and on file 14 in reversed order. File 13 is then used for forward substitution in the solution and file 14 is used for backward substitution.

For case 4, FACTRS reads the matrix from file 11, where it was written by blocks of rows (columns of the transposed matrix), and writes it to file 12 by submatrices. The submatrices are then read from 12, factored, and written to 13.

In case 5, FACTRS reads the matrix from file 11 and writes it to file 12 by blocks of rows (columns of the transposed matrix) for each submatrix. File 12 is then copied back to file 11, and the procedure of case 3 is repeated for each submatrix.

When a NGF file is to be written, half of CM is reserved for matrix storage and manipulations of the matrices B, C, and D. Hence for cases 1, 2 or 4 the primary matrix A (or submatrix for case 4) must fit into half of CM. There is no restriction for cases 3 or 5 since, with two matrix blocks fitting into CM for the LU decomposition, half of CM is available during the solution when blocks are used one at a time.

There are four modes for storing B, C, and D in the NGF solution. These are associated with the integer ICASX as follows:

$$A_{F} = \text{matrix A factored into L and U}$$

$$A_{K} = \begin{cases} A_{F} \text{ for ICASE = 1 or 2} \\ \text{one block of } A_{F} \text{ for ICASE = 3} \\ \text{one submatrix for ICASE = 4} \\ \text{one block of submatrix for ICASE = 5} \end{cases}$$

$$A_{X} = A_{F} \text{ for ICASE = 1 or 2} \\ \text{nothing otherwise} \end{cases}$$

ICASX

	· · · · · · · · · · · · · · · · · · ·
1	A _R , B, C, and D fit into CM
2	B, C, and D fit into CM but not with A _R
	(ICASE = 3, 4, 5) A_{R} and B must also fit
	into CM together
3	B, C, and D do not fit into CM, but A _x
	and $F = D - CA^{-1}B$ fit into CM for the LU
	decomposition of F
4	Same as 3 but D - CA ⁻¹ B requires file
	storage for LU decomposition

NGF Matrix Storage

When a NGF file (TAPE20) is written with ICASE = 3 or 5, files 13 and 14 are both written to TAPE20. When the NGF file is read these data are written on the single file 13 with the blocks in ascending order first and then in descending order. If A_F is stored on file 13 then space for A_R in CM is needed only when A_R is used in a solution in CM. This accounts for the definition of A_v .

File usage for ICASX = 2, 3, and 4 is outlined in Figures 13 and 14. The value for ICASX is chosen in subroutine FBNGF as the smallest value possible. The number of blocks into which matrices B, C, and D are divided is also chosen in FBNGF.

	of CM	1	12	13 13	riles 14	15	16
				AF			
(CMNGF) Compute B, C and D in CM. B Write to files 12, 14 and 15.	B, C, D		Q	AF	£	U	
(FACGF) Read 13 and 14. Compute A ⁻¹ B. A ₁ Write 14.	AF, B		Q	AF	A-1B	<u>о</u>	
Compute $F = D - CA^{-1}B$. Store over D A in CM.	A ⁻¹ B, C, D	. <u></u>	۵	ЧЧ	A-1B	U	· · · · · · · · · · · · · · · · · · ·
Write on 11. A.	A ⁻¹ B, C, F	بین لیا لی		ÅF	A-1B	υ	
Solution for excitation (E ₁ , E ₂)T (SOLGF)			· · · · · · · · · · · · · · · · · · ·	<u> </u>		•	
Compute $I_1' = A^-IE_1$ $I_2' = E_2 - CA^-IE_1 = E_2 - CI_1'$ $I_2 = F^{-1}I_2'$ $I_1 = I_1' - (A^{-1}B)I_2$ A^{-1}	AF C F A-1B	[تب [تب		A F	A ⁻¹ B	U	

(Subscript F indicates that the matrix has been factored into L and U triangular parts)

Figure 13. NGF File Usage for ICASX = 2.

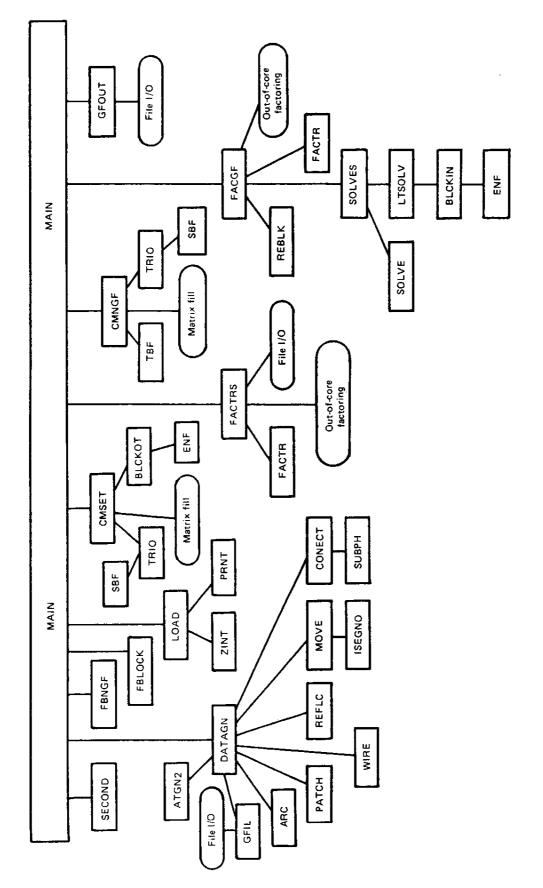

15 16	 	·······	c _R	GR BC	C _R	ч С		c _R x	С _R F	- - - - - -
14		BR	BR	BR	$A^{-1}B_{C}$	A ⁻¹ B _C		A ⁻¹ B _C	A ⁻¹ B _C	
13	AF	ÅF	AF	AF	ΑF	AF		Ъ	AF	AF -
12			DR	DR	DR	DR		- (r., (r.,		1 1 1 1
11						ţ <u>د</u>		X	म म	। म्रा ।
Contents of CM		A _X , B _R	Ax, ^C R, D _R	AX, BC, BR	AF, BC	AX, A-1 ^B C	c _R , D _R	A _X and 2 blocks of F	A _X and block of F	AX, F
RGF Procedure for ICASX = 3,4		 (CMNGF) Compute B by blocks of rows. Write to file 14. 	 Compute C and D by blocks by rows. Write to 15 and 12. 	 (REBLK) Read 14. Write B by blocks of columns on file 16. 	4. (FACGF) Read 16; compute A ⁻¹ B; write 14.	5. Read blocks from 12, 14 and 15 and compute $F = D - C(A^{-1}B)$ by blocks of rows.	Write on 11.	6. For ICASX = 4 call FACIO to factor F. FACIO reads 11 and writes 12, using 11 and 16 as scratch storage.	 LUNSCR reads 12 and writes blocks of FF on 111 in forward order and on 16 in reversed order. 	6' For ICASX = 3, read all blocks of F into CM; Factor F; write to 11.

Figure 14. NGF File Usage for ICASX = 3 or 4.

Section VIII NEC Subroutine Linkage

Figures 15 and 16 show the organization of subroutines in the NEC-2 program. All possible subroutine calls are traced, although in a particular run only certain of the traces will be followed. Routines that are called at more than one point in the program are shown as separate blocks for each call.

.

For Block Definitions, see Figure 16 NEC Subroutine Linkage Chart. Figure 15.

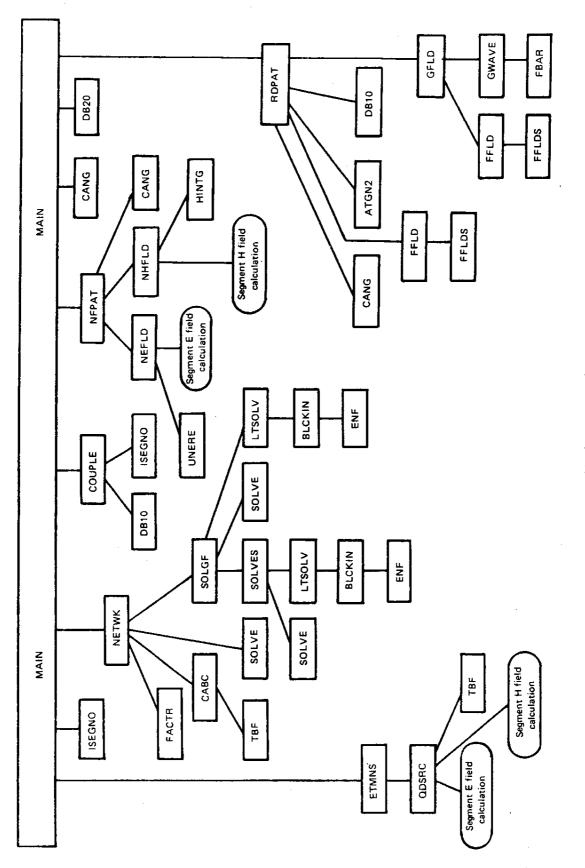
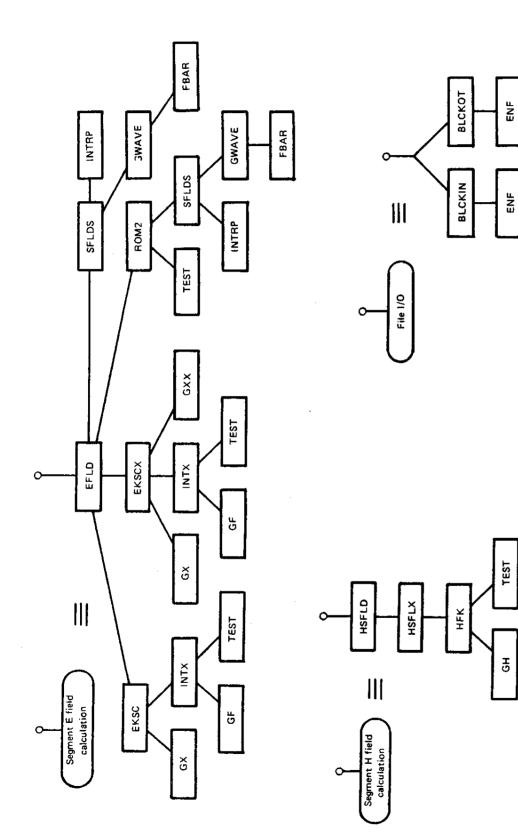



Figure 15 (continued)

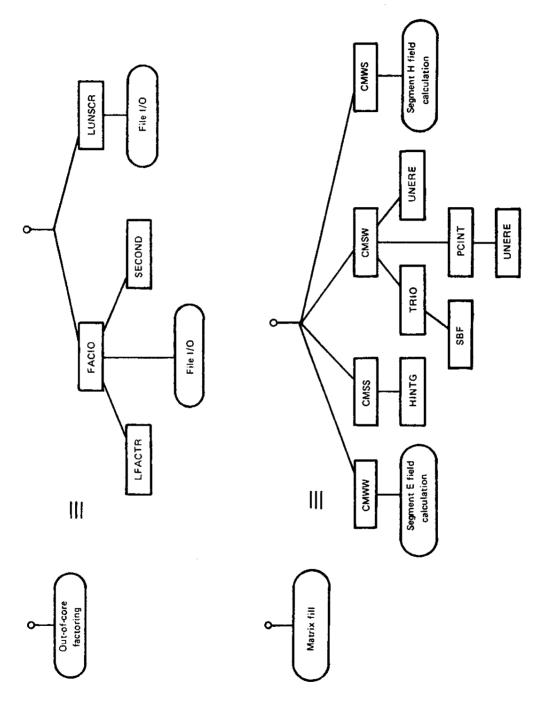


Figure 16 (continued)

Section IX SOMNEC

1. SOMNEC CODE DESCRIPTION

SOMNEC is an independent code that generates the interpolation tables for the Sommerfeld/Norton ground option for NEC. The tables are written on file TAPE21 which becomes an input file to NEC. Coding of the routines in SOMNEC is described in this section.

SOMNEC (main program)

PURPOSE

To generate interpolation tables for the Sommerfeld/Norton ground option and write them on file TAPE21.

METHOD

The code from SN17 to SN51 reads the input data and sets parameters in COMMON/EVLCOM/. Since all equations are scaled to a free-space wavelength of one meter the results depend only on the complex dielectric constant

$$\varepsilon_{c} = \varepsilon_{1} - j\sigma_{1}/(\omega\varepsilon_{0})$$
.

In the routines that evaluate the Sommerfeld integrals the time dependence is $\exp(-j\omega t)$ rather than $\exp(+j\omega t)$ which is used in the remainder of NEC. Hence the conjugate of ε_{c} (EPSCF) is taken before computing the parameters in COMMON/EVLCOM/. The conjugate of the results is taken at the end of EVLUA, so the results returned to SOMNEC and written on TAPE21 are for $\exp(+j\omega t)$.

Three interpolation tables, as shown in Figure 12 of Part I, are generated in the code from SN55 to SN123. For each R_1 , θ pair in the tables the values of ρ and z + z' are computed and stored in COMMON/EVLCOM/. Subroutine EVLUA is then called and returns the quantities

$$ERV = \frac{\partial^2}{\partial \rho \partial z} k_1^2 V_{22}'$$

$$EZV = \left(\frac{\partial^2}{\partial z^2} + k_2^2\right) k_1^2 V_{22}'$$

$$ERH = \left(\frac{\partial^2}{\partial \rho^2} k_2^2 V_{22}' + k_2^2 U_{22}'\right)$$

$$EPH = -\left(\frac{1}{\rho} \frac{\partial}{\partial \rho} k_2^2 V_{22}' + k_2^2 U_{22}'\right)$$

These are multiplied by $C_1 R_1 \exp(jkR_1)$ to form the quantities in equation (156) through (159) in Part I. When R_1 is zero the limiting forms in equations (169) through (172) of Part I are used. The expressions from

SOMNEC

SN116 to SN118 are obtained by letting θ go to zero in the expressions for $R_1 = 0$.

The data are stored in COMMON/GGRID/ which is identical to the common block in NEC. File 21 is written at SN127 and includes coordinates of the grid boundaries, number of points, and increments for R_1 and θ . Hence those grid parameters can be changed in SOMNEC without changing NEC. If the number of grid points is increased, however, the arrays in COMMON/GGRID/ must be increased in both SOMNEC and NEC. Also, the parameters NDA and NDPA in subroutine INTRP must be changed.

SYMBOL DICTIONARY

ARl	= array for grid l
AR 2	= array for grid 2
AR3	= array for grid 3
CK 1	= k ₁
	= real part of k_1
CKISQ	$= k_1^2$
СК 2	= k_2 (= 2π since λ = 1) = k_2^2
CK 2SQ	$= k_2^2$
	. 2 2 2 .
CKSM	$= k_2^2 / (k_1^2 + k_2^2)$
CL1	= $k_2^2 C_1 C_3$ (see Part 1 for C_1 , C_2 , and C_3)
CL2	$= k_2^2 C_1 C_2$
CON	= $C_1 R_1 \exp(jkR_1)$
CT1	$= (k_1^2 - k_2^2)/2$
CT2	$= (\kappa_1^4 - \kappa_2^4)/8$
ст3	$= (k_1^6 - k_2^6)/16$
DR	$= \Delta R_{\star}$
DTH	•
D XA	= ΔR_{l} for each grid

DYA = $\Delta \theta$ for each grid (radians) EPH = EPH EPR = c_1 EPSCF = c_c ERH = ERH ERV = ERV EZV = EZV FMHZ = frequency in MHZ IPT = flag to control printing of grid IR = index for R ₁ values IRS = starting value for IR ITH = index for θ values LCOMP = labels for output NR = number of R ₁ values NTH = number of θ values NTH = number of θ values for each grid R = R ₁ RHO = ρ RK = $k_2 R$ SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = 100.1 k_1 ¹ TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$EPSCF = \varepsilon_{C}^{1}$ $ERH = ERH$ $ERV = ERV$ $EZV = EZV$ $FMHZ = frequency in MHZ$ $IPT = flag to control printing of grid$ $IR = index for R_1 values$ $IRS = starting value for IR$ $ITH = index for \theta values$ $LCOMP = labels for output$ $NR = number of R_1 values$ $NTH = number of \theta values for each grid$ $R = R_1$ $RHO = \rho$ $RK = k_2R$ $SIG = \sigma_1$ $TFAC1 = (1 - sin \theta)/cos^2\theta THET = \theta TIM = time to fill arrays TKMAG = 100.1k_1l TSMAG = 100.1k_1l^2 TST = starting value of R_1 in each grid$	
ERH = $\bigcup_{k=1}^{c}$ ERV = ERV EZV = EZV FMHZ = frequency in MHZ IPT = flag to control printing of grid IR = index for R ₁ values IRS = starting value for IR ITH = index for θ values LCOMP = labels for output NR = number of R ₁ values NTH = number of θ values NXA = number of θ values for each grid NYA = number of θ values for each grid RK = R ₁ RHO = ρ RK = k_2R SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1l$ TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
ERV = ERV EZV = EZV FMHZ = frequency in MHZ IPT = flag to control printing of grid IR = index for R_1 values IRS = starting value for IR ITH = index for θ values LCOMP = labels for output NR = number of R_1 values NTH = number of θ values NTH = number of θ values for each grid NYA = number of θ values for each grid R = R_1 RHO = ρ RK = $k_2 R$ SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1 l$ TSMAG = $100.1k_1 l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
E2V = E2V FMHZ = frequency in MHZ IPT = flag to control printing of grid IR = index for R_1 values IRS = starting value for IR ITH = index for θ values LCOMP = labels for output NR = number of R_1 values NTH = number of θ values NTH = number of θ values for each grid NYA = number of θ values for each grid R = R_1 RHO = ρ RK = $k_2 R$ SIG = σ_1 TFACl = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1 l$ TSMAG = $100.1k_1 l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
FMHZ= frequency in MHzIPT= flag to control printing of gridIR= index for R_1 valuesIRS= starting value for IRITH= index for θ valuesLCOMP= labels for outputNR= number of R_1 valuesNTH= number of θ valuesNXA= number of θ values for each gridNYA= number of θ values for each gridRK= R_1 RHO= ρ RK= $k_2 R$ SIG= σ_1 TFAC1= $(1 - \sin \theta)/\cos \theta$ TFAC2= $(1 - \sin \theta)/\cos^2 \theta$ THET= θ TIM= time to fill arraysTKMAG= $100.1 k_1 l^2$ TST= starting timeWLAM= wavelength in free spaceXSA= starting value of R_1 in each grid	
$IPT = flag to control printing of grid IR = index for R1 values IRS = starting value for IR ITH = index for \theta valuesLCOMP = labels for outputNR = number of R1 valuesNTH = number of \theta valuesNXA = number of \theta values for each gridNYA = number of \theta values for each gridR = R1RHO = \rhoRK = k2RSIG = \sigma_1TFACl = (1 - \sin \theta)/\cos \thetaTFAC2 = (1 - \sin \theta)/\cos^2 \thetaTHET = \thetaTIM = time to fill arraysTKMAG = 100.1k_1iTSMAG = 100.1k_1i^2TST = starting timeWLAM = wavelength in free spaceXSA = starting value of R1 in each grid$	
$IR = index \text{ for } R_1 \text{ values}$ $IRS = starting \text{ value for } IR$ $ITH = index \text{ for } \theta \text{ values}$ $LCOMP = labels \text{ for output}$ $NR = number \text{ of } R_1 \text{ values}$ $NTH = number \text{ of } \theta \text{ values}$ $NXA = number \text{ of } \theta \text{ values for each grid}$ $R = R_1$ $RHO = \rho$ $RK = k_2R$ $SIG = \sigma_1$ $TFAC1 = (1 - \sin \theta)/\cos \theta$ $TFAC2 = (1 - \sin \theta)/\cos^2\theta$ $THET = \theta$ $TIM = time \text{ to fill arrays}$ $TKMAG = 100.1k_1 i$ $TSMAG = 100.1k_1 i^2$ $TST = starting time$ $WLAM = wavelength in free space$ $XSA = starting value of R_1 in each grid$	
IRS = starting value for IR ITH = index for θ values LCOMP = labels for output NR = number of R ₁ values NTH = number of θ values NXA = number of θ values for each grid NYA = number of θ values for each grid R = R ₁ RHO = ρ RK = k ₂ R SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
ITH = index for θ values LCOMP = labels for output NR = number of R ₁ values NTH = number of θ values NXA = number of θ values for each grid NYA = number of θ values for each grid R = R ₁ RHO = ρ RK = k ₂ R SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	•• ·
LCOMP = labels for output NR = number of R ₁ values NTH = number of θ values NXA = number of θ values for each grid NYA = number of θ values for each grid R = R ₁ RHO = ρ RK = k ₂ R SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
NR= number of R_1 valuesNTH= number of θ valuesNXA= number of R_1 values for each gridNYA= number of θ values for each gridR= R_1 RHO= ρ RK= $k_2 R$ SIG= σ_1 TFAC1= $(1 - \sin \theta)/\cos \theta$ TFAC2= $(1 - \sin \theta)/\cos^2 \theta$ THET= θ TIM= time to fill arraysTKMAG= $100.1 k_1 l^2$ TST= starting timeWLAM= wavelength in free spaceXSA= starting value of R_1 in each grid	
NTH = number of θ values NXA = number of R_1 values for each grid NYA = number of θ values for each grid R = R_1 RHO = ρ RK = $k_2 R$ SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1 i$ TSMAG = $100.1k_1 i^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
NTH = number of θ values NXA = number of R ₁ values for each grid NYA = number of θ values for each grid R = R ₁ RHO = ρ RK = k ₂ R SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1 k_1 l$ TSMAG = $100.1 k_1 l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
NYA= number of θ values for each gridR= R_1 RHO= $ρ$ RK= $k_2 R$ SIG= σ_1 TFAC1= $(1 - \sin \theta)/\cos \theta$ TFAC2= $(1 - \sin \theta)/\cos^2 \theta$ THET= θ TIM= time to fill arraysTKMAG= $100.1 k_1 l$ TSMAG= $100.1 k_1 l^2$ TST= starting timeWLAM= wavelength in free spaceXSA= starting value of R_1 in each grid	
NYA= number of θ values for each gridR= R_1 RHO= $ρ$ RK= $k_2 R$ SIG= σ_1 TFAC1= $(1 - \sin \theta)/\cos \theta$ TFAC2= $(1 - \sin \theta)/\cos^2 \theta$ THET= θ TIM= time to fill arraysTKMAG= $100.1 k_1 l$ TSMAG= $100.1 k_1 l^2$ TST= starting timeWLAM= wavelength in free spaceXSA= starting value of R_1 in each grid	
RHO = ρ RK = $k_2 R$ SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1 l$ TSMAG = $100.1k_1 l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
RHO = ρ RK = $k_2 R$ SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1 l$ TSMAG = $100.1k_1 l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1 l$ TSMAG = $100.1k_1 l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
SIG = σ_1 TFAC1 = $(1 - \sin \theta)/\cos \theta$ TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$ THET = θ TIM = time to fill arrays TKMAG = $100.1k_1 l$ TSMAG = $100.1k_1 l^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
$TFAC1 = (1 - \sin \theta)/\cos \theta$ $TFAC2 = (1 - \sin \theta)/\cos^{2}\theta$ $THET = \theta$ TIM = time to fill arrays $TKMAG = 100.1k_{1}t$ $TSMAG = 100.1k_{1}t^{2}$ TST = starting time WLAM = wavelength in free space $XSA = starting value of R_{1} in each grid$	
THET = θ TIM = time to fill arrays TKMAG = 100.1k ₁ 1 TSMAG = 100.1k ₁ 1 ² TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
TIM = time to fill arrays TKMAG = $100.1k_1l_1$ TSMAG = $100.1k_1l_2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
TKMAG = $100.1k_1l_1$ TSMAG = $100.1k_1l_2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
TSMAG = $100. k_1 ^2$ TST = starting time WLAM = wavelength in free space XSA = starting value of R_1 in each grid	
TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
TST = starting time WLAM = wavelength in free space XSA = starting value of R ₁ in each grid	
XSA = starting value of R_1 in each grid	
YSA = starting value of θ in each grid	
ZPII = Z + Z'	

CONSTANTS

= 10^{-6} times velocity of light in m/s 299.8 59.96 = $1/(2\pi c \epsilon_0)$, c = velocity of light $6.283185308 = 2\pi$

1 PROGRAM SOMNEC(INPUT.OUTPUT.TAPE21) SN 2 C 1 SN 2 3 C PROGRAM TO GENERATE NEC INTERPOLATION GRIDS FOR FIELDS DUE TO SN 3 GROUND. FIELD COMPONENTS ARE COMPUTED BY NUMERICAL EVALUATION 4 C SN 4 5 C OF MODIFIED SOMMERFELD INTEGRALS. SN 5 6 C SN 6 7 COMPLEX CK1, CK1SQ, ERV, EZV, ERH, EPH, AR1, AR2, AR3, EPSCF, CKSM, CT1, CT2, C SN 7 8 1T3, CL1, CL2, CON SN 8 COMMON /EVLCOM/ CKSM.CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C SN 9 9 10 1K1R, ZPH, RHO, JH SN 10 COMMON /GGRID/ AR1(11,10,4), AR2(17,5,4), AR3(9,8,4), EPSCF, DXA(3), DY SN 11 11 12 1A(3), XSA(3), YSA(3), NXA(3), NYA(3)SN 12 13 DIMENSION LCOMP(4) SN 13 DATA NXA/11,17,9/,NYA/10,5,8/,XSA/0.,.2,.2/,YSA/0.,0.,.3490658504/ SN 14 14 DATA DXA/.02,.05,.1/.DYA/.1745329252,.0872664626,.1745329252/ 15 SN 15 16 DATA LCOMP/3HERV, 3HEZV, 3HERH, 3HEPH/ SN 16 17 C SN 17 18 C READ GROUND PARAMETERS - EPR = RELATIVE DIELECTRIC CONSTANT SN 18 19 C SIG = CONDUCTIVITY (MHOS/M) SN 19 20 C FMHZ = FREQUENCY (MHZ)SN 20 21 C IPT = 1 TO PRINT GRIDS. =0 OTHERWISE. SN 21 22 C IF SIG .LT. 0. THEN COMPLEX DIELECTRIC CONSTANT = EPR + J*SIG SN 22 23 C AND FMHZ IS NOT USED SN 23 24 C SN. 24 25 READ 15, EPR, SIG, FMHZ, IPT SN. 25 26 IF (SIG.LT.O.) GO TO 1 SN. 26 27 WLAM=299.8/FMHZ SN 27 28 EPSCF=CMPLX(EPR,-SIG*WLAM*59.96) SN. 28 29 GO TO 2 SN 29 30 1 EPSCF=CMPLX(EPR,SIG) SN 30 31 2 CALL SECOND (TST) SN 31 32 CK2=6.283185308 SN 32 33 CK2SQ=CK2*CK2 SN 33 34 C SN 34 35 C SOMMERFELD INTEGRAL EVALUATION USES EXP(-JWT), NEC USES EXP(+JWT), SN 35 36 C HENCE NEED CONJG(EPSCF). CONJUGATE OF FIELDS OCCURS IN SUBROUTINE SN 36 37 C EVLUA. SN. 37 38 C SN 38 CK1SQ=CK2SQ*CONJG(EPSCF) SN 39 39 CK1=CSQRT(CK1SQ) SN 40 40 CK1R=REAL(CK1) SN 41 41 SN 47 TKMAG=100. •CABS(CK1) 42 SN 43 TSMAG=100.*CK1*CONJG(CK1) 4.3 44 CKSM=CK2SQ/(CK1SQ+CK2SQ) SN 44 SN 45 45 CT1=.5*(CK1SQ-CK2SQ) SN 46 ERV=CK1SQ*CK1SQ 46 SN 47 EZV=CK2SQ+CK2SQ 47 SN 48 48 CT2=.125*(ERV-EZV) SN 49 ERV=ERV*CK1SQ 49 SN 50 50 EZV=EZV*CK2SQ SN. 51 CT3=.0625*(ERV-EZV) 51 SN 52 52 C SN 53 LOOP OVER 3 GRID REGIONS 53 C SN. 54 54 C SN 55 DO 6 K=1.3 55 SN 56 NR=NXA(K) 56 SN 57 57 NTH=NYA(K) SN 58 58 DR=DXA(K)SN-59 DTH=DYA(K) 59 SN 50 R = XSA(K) - DR60 SN 61 61 IRS=1 62 SN IF (K.EQ.1) R=XSA(K) 62 SN 63 IF (K.EQ.1) IRS=2 63

SOMNEC

- .				
64			SN	64
65		LOOP OVER R. (R=SQRT(RHO**2 + (Z+H)**2))	SN	
66			SN	
67		DO 6 IR=IRS,NR	SN	
68		R=R+DR	SN	
69		THET=YSA(K)-DTH	SN	
70	С		SN	
71	С	LOOP OVER THETA. (THETA=ATAN((Z+H)/RHO))		
72	С	(())=()(())(())(())()()()()()()()()()()	SN	
73		DO 6 ITH=1,NTH	SN	
74		THET=THET+DTH	SN	
75		RHO=R*COS(THET)	SN	74
76		ZPH=R*SIN(THET)	SN	
77		IF (RHO.LT.1.E-7) RHO=1.E-8	SN	76
78		IF (ZPH.LT.1.E-7) ZPH=0.	SN	77
79			SN	78
80		CALL EVLUA (ERV,EZV,ERH,EPH)	SN	79
			SN	80
81		CON=-(0.,4.77147) • R/CMPLX(COS(RK),-SIN(RK))	SN	81
82		GO TO (3,4,5), K	SN	82
83	3	AR1(IR, ITH, 1)=ERV*CON	SN	83
84		AR1(IR,ITH,2)=EZV*CON	SN	84
85		AR1(IR,ITH,3)=ERH*CON	SN	85
86		AR1(IR,ITH,4)=EPH+CON	SN	86
87		GO TO 6	SN	87
88	4	AR2(IR,ITH,1)=ERV*CON	SN	88
89		AR2(IR,ITH,2)=EZV*CON	SN	89
90		AR2(IR, ITH, 3)=ERH+CON	SN	90
91		AR2(IR, ITH, 4)=EPH*CON	SN	91
92		GO TO 6	SN	
93	5	AR3(IR, ITH, 1)=ERV•CON		92
94		AR3(IR,ITH.2)=EZV*CON	SN	93
95		AR3(IR, ITH, 3)=ERH+CON	SN	94
96		AR3(IR, ITH, 4) = EPH + CON	SN	95
97	6	CONTINUE	SN	96
98		CONTINUE	SN	97
			SN	98
99		FILL GRID 1 FOR R EQUAL TO ZERO.	SN	99
100	C		SN	100
101		CL2=~(0.,188.370)*(EPSCF-1.)/(EPSCF+1.)	SN	101
102		CL1=CL2/(EPSCF+1.)	SN	102
103		EZV=EPSCF*CL1	SN	103
104		THET=-DTH	SN	104
105		NTH=NYA(1)	SN	105
106		DO 9 ITH=1,NTH	SN	106
107		THET=THET+DTH	SN	107
108		IF (ITH.EQ.NTH) GO TO 7		108
109		TFAC2=COS(THET)		109
110		TFAC1=(1SIN(THET))/TFAC2		110
111		TFAC2=TFAC1/TFAC2		111
112		ERV=EPSCF+CL1+TFAC1		112
113		ERH=CL1*(TFAC2-1.)+CL2		113
114		EPH=CL1+TFAC2-CL2		114
115		GO TO B		115
116	7	ERV=0.		116
117		ERH=CL2-,5*CL1		
118		EPH=-ERH		117
119	8	AR1(1,ITH,1)=ERV		118
120	0	AR1(1,1TH,2)=EZV		119
121				120
	•	AR1(1, ITH, 3)=ERH		121
122	Э	AR1(1,ITH,4)=EPH		122
123	~	CALL SECOND (TIM)		123
124				124
125		WRITE GRID ON TAPE21		125
125	C			126
127		WRITE (21) AR1, AR2, AR3, EPSCF, DXA, DYA, XSA, YSA, NXA, NYA	SN	127

SOMNEC

128		REWIND 21		
129		IF (IPT.EQ.0) GO TO 14	SN	128
130	С		SN	129
131	С	PRINT GRID	SN	130
132	С		SN	131
133		PRINT 17, EPSCF		132
134		DO 13 K=1,3	SN	133
135		NR=NXA(K)	SN	134
136		NTH=NYA(K)	SN	135
137		PRINT 18, K,XSA(K),DXA(K),NR,YSA(K),DYA(K),NTH	SN	136
138		DO 13 L=1,4	SN	137
139		PRINT 19, LCOMP(L)	SN	138
140		DO 13 IR=1,NR	SN	139
141		GO TO (10,11,12), K	SN	140
142	10	PRINT 20. IR, (AR1(IR, ITH, L), ITH=1, NTH)	SN	141
143		GO TO 13	SN	142
144	11	PRINT 20, IR.(AR2(IR.ITH.L).ITH=1.NTH)		143
145		GO TO 13		144
146	12	PRINT 20, IR. (AR3(IR, ITH, L), ITH=1, NTH)		145
147	13	CONTINUE		146
148	14	TIM=TIM-TST		147
149		PRINT 16, TIM		148
150		STOP		149
151	с			150
152	15	FORMAT (3E10.3.15)		151
153	16	FORMAT (6H TIME=,E12.5)		152
154	17	FORMAT (30HINEC GROUND INTERPOLATION GRID, /, 21H DIELECTRIC CONSTAN	5N CH	153
155		IT=, 2E12, 5)		
156	18	FORMAT (///.5H GRID, 12./.4X, 5HR(1)=, F7.4, 4X, 3HDR=, F7.4, 4X, 3HNR=, I3	SN	155
157		1,/.9H THET(1)=,F7.4,3X,4HDTH=,F7.4,3X,4HNTH=,I3.//)		155
158	19	FORMAT (///,A3)		157
159	20	FORMAT (4H IR=, I3, /, (10E12.5))		155
160				160-
			ЧIÇ	100-

.

BESSEL

PURPOSE

To compute the Bessel function of order zero and its derivative for a complex argument.

METHOD

For argument magnitudes less than a limit Z_g the functions are evaluated by the ascending series and for larger magnitudes by Hankel's asymptotic expansion (ref. 5). The ascending series are

$$J_0(Z) = \sum_{k=0}^{\infty} \frac{(-Z^2/4)^k}{(k!)^2}$$

$$J'_{0}(Z) = -J_{1}(Z) = -\frac{Z}{2} \sum_{k=0}^{\infty} \frac{(-Z^{2}/4)^{k}}{k!(k+1)!}$$

The number of terms used with an argument Z is M(IZ) where $IZ = 1. + |Z|^2$. The array M is filled for IZ from 1 to 101 on the first call to BESSEL by determining the value of k at which the term in the series for J_0 is less than 10^{-6} .

When |Z| is greater than Z_g Hankel's asymptotic expansions are used with two or three terms. These are

$$J_{v}(Z) = \sqrt{\frac{2}{\pi Z}} \left[P(v, Z) \cos \chi - Q(v, Z) \sin \chi \right] \qquad (\text{larg } Z I < \pi)$$

$$\chi = Z - (\frac{1}{2}v + \frac{1}{4})\pi$$

$$P(\nu, Z) = 1 - \frac{(\mu-1)(\mu-9)}{2!(8Z)^2} + \frac{(\mu-1)(\mu-9)(\mu-25)(\mu-49)}{4!(8Z)^4}$$

$$Q(v, 2) = \frac{(\mu-1)}{8} - \frac{(\mu-1)(\mu-9)(\mu-25)}{3!(82)^3}$$

where $\mu = 4v^2$.

When $Z_s < 121 < Z_s + \Delta$ both the series and asymptotic forms are evaluated and are combined as

$$J(Z) = \frac{1}{2} [J_{g}(Z)(1+C) + J_{a}(Z)(1-C)]$$

where $C = \cos \left(\frac{\pi}{\Delta} \left(|Z| - Z_s \right) \right)$

 $J_{s}(Z) = result of series evaluation$

 α

 $J_a(2)$ = result of asymptotic evaluation

This combination ensures a smooth transition between the two regions. In the code Z_s is 6 and Δ is 0.1.

SYMBOL DICTIONARY

A2 = $1./(k + 1)$ C3 = $\sqrt{2/\pi}$ = 0.7978845608	
C3 = $\sqrt{2/\pi}$ = 0.7978845608	
$CZ = \cos \chi$	
$FJ = \sqrt{-1}$.	
FJX = FJ	
IB = 1 to indicate that both the series and asymptotic forms will	be
evaluated and combined	
INIT = flag to indicate that initialization of constants has been	
completed	
$IZ = 1. + Z ^2$ truncated to an integer	
$J_0 = J_0(Z)$	
$JOP = J_0(Z)$	
JOPX = $J_0(Z)$ from series to be combined with asymptotic result	
JOX = $J_0(Z)$, same as JOPX	
K = summation index k, summed from 1 to limit	

BESSEL

= array of upper limits for k М MIZ = upper limit for k POZ = P(0,z)= coefficient in POZ = $9/(2 \times 8^2)$ P10 = coefficient in PlZ = $-(4 - 1)(4 - 9)/(2 \times 8^2)$ P11 P1Z = P(1,Z)P20 = coefficient in POZ = $9 \times 25 \times 49/(4!8^4)$ = coefficient in PlZ = $-(4 - 1)(4 - 9)(4 - 25)(4 - 49)/(4!8^4)$ P21 ΡI - π POF ≕ π/4 QOZ = Q(0,Z)Q10 = coefficient in Q(0,Z) = 1/8Q11 = coefficient in Q(1,Z) = 3/8Q1Z = Q(1,Z)= coefficient in $Q(0,Z) = 9 \times 25/(3!8^3)$ Q20 = coefficient in $Q(1,Z) = (4 - 1)(4 - 9)(4 - 25)/(3!8^3)$ Q21 SZ = sin χ = magnitude of the term in the series TEST Z = Z = Z^2 or 1/Z**Z** I $Z12 = 1/Z^2 \text{ or } exp(-j\chi)$ = $(-Z^2/4)^k/(k!)^2$ for series. Also temporary storage for ZK asymptotic method = $|Z|^2$ or temporary storage ZMS

CONSTANTS

31.41592654	= 10.π
36.	$= 6^2$
37.21	$= 6.1^2$

BESSEL

4			
1 2 C	SUBROUTINE BESSEL (Z, JO, JOP)	BE	1
3 C		BE	2
	BESSEL EVALUATES THE ZERO-ORDER BESSEL FUNCTION AND ITS DERIVATIVE	BE	3
4 C 5 C	FOR COMPLEX ARGUMENT Z.	BE	4
		BE	5
6	COMPLEX J0, J0P, P0Z, P1Z, Q0Z, Q1Z, Z, ZI, ZIZ, ZK, FJ, CZ, SZ, J0X, J0PX	BE	6
7	DIMENSION $M(101)$, $A1(25)$, $A2(25)$, $FJX(2)$	BΕ	7
8	EQUIVALENCE (FJ,FJX)	BE	8
9	DATA PI,C3,P10,P20,Q10,Q20/3.141592654,.7978845608,.0703125,.11215		9
10	120996,.125,.0732421875/ DATA P11,P21,Q11,Q21/.1171875,.1441955566,.375,.1025390625/	BE	10
11	· · · · · · · · · · · · · · · · · · ·	8E	11
12	DATA POF, INIT/.7853981635,0/,FJX/0.,1./	BE	12
13	IF (INIT.EQ.0) GO TO 5 ZMS=Z*CONJG(Z)	BE	13
14 1		BE BE	14
15	IF (ZMS.GT.1.E-12) GO TO 2	BE	15 16
16	JO=(1.,O.) JOP=5*Z	BE	17
17 18	RETURN	BE	18
	IB=0	8E	19
19 2	IG-0 IF (2MS.GT.37.21) GO TO 4	BE	20
20	IF (ZMS.GT.36.) IB=1	BE	21
21 22 C	SERIES EXPANSION	8E	22
22 0	IZ=1.+ZMS	BE	23
23	MIZ=M(IZ)	BE	24
24	J0=(1.,0.)	8E	25
26	JOP=J0	BE	26
27	ZK=J0	BE	27
28	ZI=Z*Z	8E	28
29	DO 3 K=1,MIZ	BE	29
30	∠K⊐ZK•A1(K)•ZI	BE	30
31	JO=JO+ZK	BE	31
32 3	JOP=JOP+A2(K)*ZK	BE	32
33	JOP=5+Z+JOP	BE	33
34	IF (IB.EQ.O) RETURN	BE	34
35	OL=XOL	ΒE	35
36	JOPX=JOP	θE	36
37 C	ASYMPTOTIC EXPANSION	8E	37
384	ZI=1./Z	BE	38
39	ZI2=ZI•ZI	BΕ	39
40	P0Z=1.+(P20*ZI2-P10)*ZI2	θE	40
41	P1Z=1.+(P11-P21*ZI2)*ZI2	8E	41
42	Q0Z=(Q20*ZI2-Q10)*ZI	BE	42
43	Q1Z=(Q11-Q21*ZI2)*ZI	BE	43
44	ZK=CEXP(FJ*(Z-POF))	BE	44
45	ZI2=1./ZK	BE	45
46	CZ=.5•(ZK+ZI2)	BE	46
47	SZ=FJ*.5*(ZI2-ZK)	BE BE	47 48
48	ZK=C3*CSQRT(ZI)	BE	49
49	J0=ZK*(P0Z*CZ-Q0Z*SZ) J0P=-ZK*(P1Z*SZ+Q1Z*CZ)	BE	50
50 51	IF (IB.EQ.O) RETURN	BE	51
52.	ZMS=COS((SQRT(ZMS)-6.)*31.41592654)	8E	52
53	JO=.5•(JOX+(1.+ZMS)+JO*(1ZMS))	BE	53
54	JOP=.5*(JOPX*(1.+ZMS)+JOP*(1ZMS))	BE	54
55	RETURN	θE	55
56 C	INITIALIZATION OF CONSTANTS	BE	56
57 5	DO 6 K=1,25	BE	57
58	$A1(K) =25/(K \cdot K)$	BE	58
59 6	A2(K)=1./(K+1.)	ΒĘ	59
60	$DO \ 8 \ I=1,101$	8E	60
61	TEST=1.	8E	61
62	DO 7 K=1,24	8E 8E	62 63
63		86	64
64	TEST=-TEST*I*A1(K)	_	-

bessel

65	IF (TEST.LT.1.E-6) GO TO B		
66 7	CONTINUE	8E	65
678	M(I)=INIT	BE	66
68	GO TO 1	BE	67
69	END	8E	68
		BE	69-

EVLUA

PURPOSE

To control the evaluation of the Sommerfeld integrals.

METHOD

The integration contour of either Figures 13, 14 or 15 of Part I is used depending on the values of ρ , Z + Z' and k₁. Figures 13, 14, and 15 should be inverted, however, since they are for a time dependence of exp(jwt) and the coding for the Sommerfeld integrals is for exp(-jwt). Thus the contours and branch cuts in EVALUA are the conjugate of those shown. The conjugate of the results is taken at the end of EVLUA to conform to the NEC time dependence of exp(jwt).

The code from EV 19 to EV 34 evaluates the Bessel function form of the Sommerfeld integrals using the contour of Figure 13 of Part I. ROM1 is called to integrate from $\lambda = 0$ to (p - jp) and GSHANK is called for the path from (p - jp) to infinity where p^{-1} is the maximum of ρ and Z + Z' (p = DEL). If p is greater than 100. $|k_1|$ then ROM1 is called for the interval 0 to $(p_1 - jp_1)$ where $p_1 = 10|k_1|$. This is done to avoid exceeding the limit by which ROM1 can cut the interval width. Larger steps can then be used from $(p_1 - jp_1)$ to (p - jp) since $\gamma_1 \approx \gamma_2 \approx \lambda$.

The code from EV 39 to EV 86 evaluates the Hankel function form of the integrals using either the contour of Figure 14 or 15. At EV 50 SUM is the negative of the integral from a* to c*. GSHANK is then called to integrate from a* to $-\infty$. The decision whether to use the contour of Figures 14 or 15 is made from EV 58 to EV 64. Figure 15 is used if the real part of $\rho(k_1 - k_2)$ exceeds $2k_2$ and

$$\frac{-u}{|v|} > \frac{4\rho}{Z+Z}$$

where $u + jv = [-(Z + Z') + j\rho][d* - c*]$ is the argument of the exponential function approximating the Sommerfeld integrand for large λ with $\lambda = d* - c*$. The left side of the inequality is proportional to the decay per cycle along the c to d path and $\rho/(Z + Z')$ is the same for the vertical path. This condition was chosen arbitrarily but gives some indication of when the contour of Figure 16 may be advantageous.

-402-

For the contour of Figure 15 GSHANK is called to integrate from e* to infinity. ROMI is then called from e* to f*. The sign of the contribution from other parts of the path is switched since they were integrated in reverse direction. Finally, GSHANK is called for the paths from c* to infinity and f* to infinity.

For the contour of Figure 14 (GS 79 to GS 86) GSHANK is called to integrate from c* to d* and on to infinity. The increment changes from DELTA to DELTA2 if d* is reached before the integral converges.

From EV 89 to EV 92 the integrals are combined to form the field components and the conjugates are taken.

SYMBOL DICTIONARY

A	= start of integration interval
ANS	= temporary storage
в	= end of integration interval
вк	= break point (d*) in path for GSHANK
CK1	$= k_1$
CK1 CK1SQ	$= \kappa_1^2$
CK 2	= k ₂
CK2SQ	$= \kappa_2^2$
CP1	
CP2	= b*
CP3	= c*
DEL	= p
DELTA	= increment along path
DELTA2	= alternate increment
E PH	= (see SOMNEC)
ERH	= (see SOMNEC)
ERV	= (see SOMNEC)
EZV	= (see SOMNEC)
JH	= 0 for Bessel function form, 1 for Hankel function form
РТР	$= 0.2\pi$
кнø	= ρ

EVLUA

,

RMIS	= temporary storage
SLOPE	= slope of paths to infinity
SUM	= temporary storage
TKMAG	$= 1001k_{1}$
2 РН	= Z + Z'

1	SUBROUTINE EVLUA (ERV.EZV.ERH.EPH)	ΕV	1
2 C		E۷	2
3 C	EVALUA CONTROLS THE INTEGRATION CONTOUR IN THE COMPLEX LAMBDA	E۷	3
4 C	PLANE FOR EVALUATION OF THE SOMMERFELD INTEGRALS.	E۷	4
5 C		EΥ	5
6.	COMPLEX ERV, EZV, ERH, EPH, A, B, CK1, CK1SQ, BK, SUM, DELTA, ANS, DELTA2, CP1,	E۷	6
7	1CP2,CP3,CKSM,CT1,CT2,CT3	٤V	7
8	COMMON /CNTQUR/ A,B	E۷	8
9	COMMON /EVECOM/ CKSM.CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C	E۷	9
10	1K1R,ZPH,RHO,JH	ΕV	10
11	DIMENSION SUM(6), ANS(6)	E٧	11
12	DATA PTP/.6283185308/	٤V	12
13	DEL=ZPH	E٧	13
14	IF (RHO.GT.DEL) DEL=RHO	EΥ	14
15	IF (ZPH.LT.2.*RHO) GO TO 4	EV	15
16 C		EV	16
17 C	BESSEL FUNCTION FORM OF SOMMERFELD INTEGRALS	EV	17
18 C		EV	18
19		EV	19
20 21	A=(0.,0.) DEL=1./DEL	EV EV	20 21
21	IF (DEL.LE.TKMAG) GO TO 2	EV	22
22	B=CMPLX(.1*TKMAG,1*TKMAG)	EV	23
24	CALL ROM1 (6,SUM,2)	EV	24
25		EV	25
26	A→C B≠CMPLX(DEL,~DEL)	EV	26
27	CALL ROM1 (6.ANS,2)	Ēν	27
28	DO 1 $I = 1, 6$	EV	28
29 1	SUM(I)≃SUM(I)+ANS(I)	ĒV	29
30	GO TO 3	EV	30
31 2	B=CMPLX(DEL,-DEL)	ΕV	31
32	CALL ROM1 (6,SUM,2)	£٧	32
33 3	DELTA=PTP • DEL	E۷	33
34	CALL GSHANK (B,DELTA,ANS,6,SUM,0,B,B)	E۷	34
35	GO TO 10	E۷	35
36 C		E۷	36
37 C	HANKEL FUNCTION FORM OF SOMMERFELD INTEGRALS	E۷	37
38 C		E۷	38
39 4	JH=1	E۷	39
40	CP1=CMPLX(0.,.4*CK2)	E٧	40
41	CP2=CMPLX(.6*CK2,2*CK2)	EΥ	41
42	CP3=CMPLX(1.02*CK2,2*CK2)	EΥ	42
43	A=CP1	EV	43
44	B=CP2	ÉV	44
45	CALL ROM1 (6,SUM,2)		45
46	A=CP2	EV	46
47 48	B=CP3 Call Rom1 (6,ANS,2)	EV EV	47 48
40 49	DO 5 $I=1,6$	EV	40
49 50 5	SUM(I) = -(SUM(I) + ANS(I))	ĒV	
50 5 51 C	PATH FROM IMAGINARY AXIS TO -INFINITY	Ēν	51
52	SLOPE=1000.	ĒV	52
53	IF (ZPH.GT001*RHO) SLOPE=RHO/ZPH	EV	53
54	DEL=PTP/DEL	ΕV	54
55	DELTA=CMPLX(-1.,SLOPE) • DEL/SQRT(1.+SLOPE • SLOPE)	ĒV	55
56	DELTA2=-CONJG(DELTA)	ΕV	56
57	CALL GSHANK (CP1,DELTA,ANS,6,SUM,0,BK,BK)	ΕV	57
58	RMIS=RHO*(REAL(CK1)-CK2)	E۷	58
59	IF (RMIS.LT.2.*CK2) GO TO 8	E۷	59
60	IF (RHO.LT.1.E-10) GO TO 8	E۷	60
61	IF (ZPH.LT.1.E-10) GO TO 6	E۷	61
62	BK=CMPLX(-ZPH,RHO)*(CK1-CP3)	EV	62
63	RMIS=-REAL(BK)/ABS(AIMAG(BK))	EV	63
64	IF(RMIS.GT.4.*RHO/ZPH)GO TO 8	ΕV	64

EVLUA

65	с	INTEGRATE UP BETWEEN BRANCH CUTS, THEN TO + INFINITY		
66	6	CP1=CK1-(.1,.2)	EV	65
67		CP2=CP1+.2	٤v	66
68		8K=CMPLX(0.,DEL)	EV	67
69		CALL GSHANK (CP1, BK, SUM, 6, ANS, 0, BK, BK)	EV	68
70		A=CP1	EV	69
71		B=CP2	EV	70
72		CALL ROMI (6,ANS,1)	٤V	71
73		DO 7 I=1,6	EV	72
74	7	ANS(I)=ANS(I)-SUM(I)	EV	73
75		CALL GSHANK (CP3, BK, SUM, 6, ANS, 0, BK, BK)	٤V	
76		CALL GSHANK (CP2, DELTA2, ANS, 6, SUM, 0, BK, BK)	EV	75
77		GO TO 10	EV	76
78	С	INTEGRATE BELOW BRANCH POINTS, THEN TO + INFINITY	٤v	77
79	8	00 9 I=1,6	EV	78
80	9	SUM(I)=-ANS(I)	EV	79
81		RMIS=REAL(CK1)+1.01	EV	80
82		IF (CK2+1GT.RMIS) RMIS=CK2+1.	EV	81
83		BK=CMPLX(RMIS,.99*AIMAG(CK1))	EV	82
84		DELTA=BK-CP3	EV	83
85		DELTA=DELTA*DEL/CABS(DELTA)	EV	84
86		CALL GSHANK (CP3, DELTA, ANS, 6, SUM, 1, BK, DELTA2)	EV	85
87	10	ANS(6)=ANS(6)*CK1	€V	86
88	С	CONJUGATE SINCE NEC USES EXP(+JWT)	EV	87
89		ERV=CONJG(CK1SQ*ANS(3))	EV	88
90		EZV=CONJG(CK1SQ*(ANS(2)+CK2SQ*ANS(5)))	EV	89
91		ERH=CONJG(CK2SQ*(ANS(1)+ANS(6)))	EV	90
92		EPH=-CONJG(CK2SQ*(ANS(4)+ANS(6)))	EV	91
93		RETURN	EV	92
94		END	EV	93
			Eν	94-

SHANK

PURPOSE

To apply the Shanks transformation (ref. 6) to accelerate the convergence of a semi-infinite integral.

(ETHOD

Six integrals (NANS = 6) are evaluated simultaneously in this routine. 'he integrals over semi-infinite sections of the contours (Figures 13, 14 and 5 of Part I) are evaluated by using the Romberg variable interval width integration method on subsections to obtain a converging sequence of partial jums

$$S_{i} = S_{0} + \int_{A_{0}}^{A_{0} + i\Delta} f(\lambda) d\lambda$$
 $i = 1, 2, ...$

here A_0 is the start of the semi-infinite path, S_0 is the contribution rom other parts of the contour and Δ is a complex increment with

$$|\Delta| = \text{minimum of} \begin{cases} 0.2\pi/\rho \\ 0.2\pi/(Z + Z^{*}) \end{cases}$$

arg(Δ) = direction of integration path in λ -plane

he Shanks interated first order transformation is applied to S_i to ccelerate convergence. Starting with the sequence of M elements $i,0 = S_i, i = 1, \dots$ M the jth iterated transform is the sequence of - 2j elements

$$Q_{ij} = \frac{Q_{i-1,j-1}Q_{i+1,j-1} - Q_{i,j-1}^2}{Q_{i-1,j-1} + Q_{i+1,j-1} - 2Q_{i,j-1}}$$

$$= Q_{i-1, j-1} - \frac{(Q_{i, j-1} - Q_{i-1, j-1})^2}{Q_{i-1, j-1} + Q_{i+1, j-1} - 2Q_{i, j-1}}$$

 $i = j + l, \dots M - j$ $j = 1, \dots [(M - 1)/2].$

The second form for $Q_{i,j}$ is used since it suffers less numerical error as the sequence converges. Each iteration of the transform should produce a sequence that converges more rapidly to the limit of the original sequence.

In this subroutine the starting value S_0 comes in as SEED. With each pass through the loop over INT, starting at GS 21, two new values are added to the sequence by calling ROM1 to evaluate the integrals

$$s_{2N-1} = s_{2N-2} + \int_{A_0^{+(2N-1)\Delta}}^{A_0^{+(2N-1)\Delta}} f(\lambda) d\lambda$$

$$S_{2N} = S_{2N-1} + \int_{A_0^+(2N-1)\Delta}^{A_0^+(2N)\Delta} f(\lambda)d\lambda$$

where N = INT. The $(N - 1)^{th}$ interated Shanks transformation, consisting of the two elements $Q_{N,N-1}$ and $Q_{N+1,N-1}$, is then computed. At the end of each pass through the loop over INT the arrays Q1 and Q2 contain the last two elements in each sequence. For function I,

$$Q1(I,J) = Q_{2N-J,J-1}$$

 $Q2(I,J) = Q_{2N-J+1,J-1}$, $J = 1, ..., N$.

For the path from c to infinity in Figure 14 of Part I the point d is a break point at which Δ may change. If d is reached before convergence the Shanks transformation is started over with the final value of S₁ becoming S₀ for the new sequence.

Convergence is tested from GS 78 to GS 89 by comparing the last two values in the transformed sequences. Although the last sequence, consisting of two elements, should have the highest convergence the last four sequences are tested to avoid a false indication of convergence. The relative difference is computed for each of the six functions and compared with CRIT. If convergence does not occur by INT = MAXH a message is printed and the average of the two values in the last sequence is used for each integral. In computing the relative difference for each function the denominator is not allowed to be less than 10^{-3} times the magnitude of the largest of the six functions to avoid convergence problems when one function goes to zero.

SYMBOL DICTIONARY

A	= beginning of integration subinterval
Al	= new value for Ql array
A 2	= new value for Q2 array
AA	= temporary storage
AMG	= approximate magnitude of function
ANS1	= S _i for i odd
ANS2	= S _i for i even
AS1	= S _i for i odd
AS2	= S _i for i even
В	= end of integration subinterval
BK	= break point in integration contour
CRIT	= limit for relative error in convergence test
DEL	= Δ
DELA	= Δ before break point
DEL8	= Δ after break point
DEN	= approximate magnitude of the largest of the six functions
	(GS 76)
DENM	= minimum denominator for relative error test
IBK	= 1 if path contains break point
IBX	= 0 if path contains break point and it has not been passed
INT	= N

GSHANK

-409-

INX = INT JM = J - 1MAXH = maximum for index J in Ql and Q2 NANS = number of functions (6) Q1, Q2 = (see description of method) RBK = real part of BK SEED = S₀ START = A₀ SUM = increment to integral

1		SUBROUTINE GSHANK (START, DELA, SUM, NANS, SEED, IBK, BK, DELB)		
	с	COBROSTINE CONTAIN (START, DELA, SOM, RANS, SEED, IBR, BR, DELB)	GS GS	1
3	С	GSHANK INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM START TO	GS	2 3
4	С	INFINITY (UNTIL CONVERGENCE) IN LAMBDA. AT THE BREAK POINT, BK.	GŞ	4
	C	THE STEP INCREMENT MAY BE CHANGED FROM DELA TO DELB. SHANK S	GS	5
	c	ALGORITHM TO ACCELERATE CONVERGENCE OF A SLOWLY CONVERGING SERIES	GS	6
	C	IS USED	GS	7
	С		GS	8
9 10		COMPLEX START, DELA, SUM, SEED, BK, DELB, A, B, Q1, Q2, ANS1, ANS2, A1, A2, AS1, AS2, DEL, A4	GS	9
11		1AS2.DEL.AA COMMON /CNTOUR/ A.B	GS	10
12		DIMENSION Q1(6,20), Q2(6,20), ANS1(6), ANS2(6), SUM(6), SEED(6)	GS	11
13		DATA CRIT/1.E-4/,MAXH/20/	GS GS	12
14		RBK=REAL(BK)	GS	13 14
15		DEL=DELA	GS	15
16		18X=0	GS	16
17		IF (IBK.EQ.0) IBX=1	GS	17
18	4	DO 1 I=1,NANS	GS	18
19 20	I	ANS2(I)=SEED(I) B=START	GS	19
21	2	DO 20 INT=1,MAXH	GS	20
22	-	INX=INT	GS	21
23		A=8	GS	22
24		8=8+DEL	GS GS	23 24
25		IF (IBX.EQ.O.AND.REAL(B).GE.RBK) GO TO 5	GS	25
26		CALL ROM1 (NANS,SUM,2)	GS	26
27	-	DO 3 I=1, NANS	GS	27
28	3	ANS1(I)=ANS2(I)+SUM(I)	GS	28
29 30			GS	29
31		B=B+DEL IF (IBX.EQ.O.AND.REAL(B).GE.RBK) GO TO 6	GS	30
32		CALL ROM1 (NANS, SUM, 2)	GS	31
33		DO 4 I=1, NANS	GS GS	32
34	4	ANS2(I)=ANS1(I)+SUM(I)	GS	33 34
35		GO TO 11	GS	35
36		HIT BREAK POINT. RESET SEED AND START OVER.	GS	36
37	5	IBX=1	GS	37
38	e		GS	38
39 40		18X=2 9=8K	GS	39
41	'	DEL=DELB	GS	40
42		CALL ROM1 (NANS, SUM, 2)	GS	41
43		IF (IBX.EQ.2) GO TO 9	GS GS	42 43
44		DO 8 I=1,NANS	GS	43
45	8	ANS2(I)=ANS2(I)+SUM(I)	GS	
46	-	GO TO 2	GS	46
47		DO 10 I=1, NANS	GS	47
40 49	10	ANS2(I)=ANS1(I)+SUM(I).	GS	48
50	11	GO TO 2 DEN=0.	GS	49
51		DO 18 I=1,NANS	GS	50
52		AS1=ANS1(I)	GS GS	51 52
53		AS2=ANS2(I)	GS	53
54		IF (INT.LT.2) GO TO 17	GS	54
55		00 16 J=2, INT	GS	55
56 57		JM=J-1	GS	56
58		AA=Q2(I,JM) A1=Q1(I,JM)+AS1-2.*AA	GS	57
59		IF (REAL(A1).EQ.0AND.AIMAG(A1).EQ.0.) GO TO 12	GS	58
60		A2=AA=Q1(I,JM)	GS	59
61		A1=Q1(I,JM)-A2*A2/A1	GS GS	60 61
62	_	GO TO 13	GS	62
63		A1=Q1(I,JM)	GS	63
64	13	A2=AA+AS2-2. *AS1	GS	64

.

65	IF (REAL(A2).EQ.0AND.AIMAG(A2).EQ.0.) GO TO 14		
66	A2=AA-(AS1-AA)*(AS1-AA)/A2	GS	63
67	GO TO 15	GS	66
68 14	A2=AA	GS	6)
69 15	Q1(I,JM)=AS1	GS	68
70	Q2(I,JM)=AS2	GS	69
71	AS1=A1	GS	70
72 16	AS2=A2	GS	
73 17	Q1(I.INT)=AS1	GS	
74	Q2(I,INT)=AS2	GS	
75	AMG=ABS(REAL(AS2))+ABS(AIMAG(AS2))	GS	-
76	IF (AMG.GT.DEN) DEN=AMG	GS	75
77 18	CONTINUE	GS	76
78	DENM=1.E-3*DEN*CRIT	GS	77
79	JM=INT-3	GS	78
80	IF (JM.LT.1) JM=1	GS	- 79
81	DO 19 J=JM, INT	GS	80
82	DO 19 I=1, NANS	GS	
83	A1=Q2(I,J)	GS	
84	DEN=(ABS(REAL(A1))+ABS(AIMAG(A1)))*CRIT	GS	
85	IF (DEN.LT.DENM) DEN=DENM	GS	-
86	A1=Q1(I,J)-A1	GS	85
87	AMG=ABS(REAL(A1))+ABS(AIMAG(A1))	GS	86
88	IF (AMG.GT.DEN) GO TO 20	GS	87
89 19	CONTINUE	GS	88
90	GO TO 22	GS	89
91 20	CONTINUE	GS	90
92	PRINT 24	GS	91
93	DO 21 I=1, NANS	GS	92
94 21	PRINT 25, Q1(I,INX),Q2(I,INX)	GS	93
95 22	DO 23 I=1, NANS	GS	94
96 23	SUM(I) = .5*(Q1(I, INX)+Q2(I, INX))	GS	95
97	RETURN	GS	96
98 C		GS	97
99 24	FORMAT (AGH **** NO CONVERCENCE TH SUDDOUTTING CONVERCENCE	GS	98
100 25	FORMAT (46H **** NO CONVERGENCE IN SUBROUTINE GSHANK ****) FORMAT (10E12.5)	GS	99
101	END	GS	
		GS	101-

HANKEL

PURPOSE

To compute the Hankel function of the first kind, zeroth order, and its derivative for a complex argument.

METHOD

For argument magnitudes less than a limit Z_s the functions are evaluated by the ascending series and for larger magnitudes by Hankel's asymptotic expansion (ref. 5). The series are

$$Y_0(Z) = \frac{2}{\pi} \ln(Z/2) J_0(Z) - \frac{2}{\pi} \sum_{k=0}^{\infty} \psi(k+1) \frac{(-Z^2/4)^k}{(k!)^2}$$

$$Y'_{0}(Z) = \frac{2}{\pi Z} + \frac{2}{\pi} \ln(Z/2) J'_{0}(Z) + \frac{Z}{2\pi} \sum_{k=0}^{\infty} [\psi(k+1) + \psi(k+2)] \frac{(-Z^{2}/4)^{k}}{k!(k+1)!}$$

here $\psi(k+1) = -\gamma + \sum_{j=1}^{k} j^{-1}$

wh

$$\psi(1) = -\gamma,$$

 γ = Euler's constant = 0.5772156649

The Hankel functions are

$$H_0^{(1)}(Z) = J_0(Z) + j Y_0(Z)$$

$$H_0^{(1)'}(Z) = J_0^{'}(Z) + j Y_0^{'}(Z)$$

The series for $J_0(Z)$ and $J_0(Z)$ are given in the description of subroutine BESSEL. The number of terms used with an argument Z is M(IZ) where IZ = 1. + $|Z|^2$.

The array M is filled for IZ from 1 to 101 on the first call to HANKEL by determining the value of k at which the term in the series of Y_{Ω} is less than 10^{-6} .

HANKEL

When |Z| is greater than Z_s Hankel's asymptotic expansions are used with two or three terms. These are

$$H_{v}^{(1)}(Z) = \sqrt{\frac{2}{\pi Z}} [P(v,Z) + jQ(v,Z)]e^{jX}$$

$$\chi = Z - (\frac{1}{2}v + \frac{1}{4})\pi$$

P(v, Z) and Q(v, Z) are given in the description of subroutine BESSEL.

When $Z_s < 121 < Z_s + \Delta$ both the series and asymptotic forms are evaluated and are combined as in BESSEL to eliminate any discontinity. In HANKEL Z_s is 4 and Δ is 0.1.

SYMBOL DICTIONARY

Al	$= -1./(4k^2)$
A2	= 1./(k+1)
A 3	= 2ψ(k+1)
A4	$= [\psi(k+1) + \psi(k+2)]/(k+1)$
Cl	= $[\psi(1) + \psi(2)]/(2\pi)$
C 2	$= 2\gamma/\pi$
С3	$=\sqrt{2/\pi}$
CLOGZ	$= \ln(Z)$
FJ	$=\sqrt{-1}$
FJX	= FJ
G AMMA	
HO	$= H_0^{(1)}(Z)$
HOP	$= H_0^{(1)'(Z)}$
1 B	= l to indicate that both the series and asymptotic forms will be
	evaluated and combined
INIT	= flag to indicate that initialization of constants has been
	completed
	$= 1. + Z ^2$
JO	$= J_0(Z)$
JOb	$= J_0(Z)$

= summation index k, summed from 1 to limit К = array of upper limits for k М MIZ = upper limit for k POZ, P10, P11, P1Z, P20, P21: see BESSEL ΡI = π POF $= \pi/4$ PSI = ψ QOZ, Q10, Q11, Q1Z, Q20, Q21: see BESSEL TEST = magnitude of term in the series $= Y_0(Z)$ ΥO $= Y'_0(Z)$ YOP = Z Z $= Z^2 \text{ or } 1/Z$ ZI $212 = 1/2^2$ = $(-z^2/4)^k/(k!)^2$; also temporary storage ZK = $|Z^2|$ or temporary storage ZMS

CONSTANTS

16.	$= 4^2$
16.81	$= 4.1^2$
31.41592654	= 10.π

1		SUBROUTINE HANKEL (Z.HO,HOP)	НА	۱
	с с		HA	2
	c	HANKEL EVALUATES HANKEL FUNCTION OF THE FIRST KIND, ORDER ZERO,	HA	3
	c	AND ITS DERIVATIVE FOR COMPLEX ARGUMENT Z.	HA	4
6		COMPLEY CLOCY HO HOP IN 108 BOT BIT OUT OUT YO WOR T TT TTO THE	HA	5
7		COMPLEX CLOGZ,H0,H0P,J0,J0P,P0Z,P1Z,Q0Z,Q1Z,Y0,Y0P,Z,ZI,ZI2,ZK,FJ DIMENSION M(101), A1(25), A2(25), A3(25), A4(25), FJX(2)	HA	6
8		EQUIVALENCE (FJ.FJX)	HA	7
9		DATA PI.GAMMA, C1, C2, C3, P10, P20/3.141592654, .5772156649,024578509	HA	8
10		15,.3674669052,.7978845608,.0703125,.1121520996/	HA	9 10
11		DATA Q10,Q20,P11,P21,Q11,Q21/.125,.0732421875,.11718751441955566	HA	11
12		1,.375,.1025390625/	HA	12
13		DATA POF, INIT/.7853981635,0/,FJX/0.,1./	HA	13
14		IF (INIT.EQ.0) GO TO 5	HA	14
15		ZMS=Z*CONJG(Z)	HA	15
16 17		IF (ZMS.NE.O.) GO TO 2 PRINT 9	HA	16
18		STOP	HA	17
19		IB=0	HA	18
20		IF (ZMS.GT.16.81) GO TO 4	HA	19
21		IF (ZMS.GT.16.) IB=1	HA HA	20 21
22	С	SERIES EXPANSIÓN	HA	22
23		IZ=1.+ZMS	HA	23
24		MIZ=M(IZ)	HA	24
25		JO=(1., 0.)	HA	25
26		JOP=JO	HA	26
27 28		YO=(0.,0.) YOP=YO	HA	27
29		ZK=J0	HA	28
30		ZI=Z•Z	HA HA	29
31		DO 3 K=1,MIZ	HA	30 31
32		ZK=ZK*A1(K)*ZI	HA	32
33		JO=JO+ZK	HA	33
34		JOP=JOP+A2(K)•ZK	HA	34
35		Y0=Y0+A3(K)*ZK	HA	35
36		YOP=YOP+A4(K)*ZK	HA	36
37 38		J0P=5*Z*J0P CLOGZ=CLOG(.5*Z)	HA	37
39		YO=(2.*JO*CLOGZ-YO)/PI+C2	HA	38
40		YOP=(2./Z+2.*JOP*CLOGZ+.5*YOP*Z)/PI+C1*Z	HA HA	39 40
41		HO=JO+FJ•YO	HA	41
42		HOP=JOP+FJ*YOP	HA	42
43		IF (IB.EQ.0) RETURN	HA	43
44		Y0=H0	HA	44
45		YOP=HOP	HA	45
	c	ASYMPTOTIC EXPANSION	HA	46
47	4	ZI=1./Z ZI2=ZI•ZI	HA	47
40		POZ=1.+(P20*ZI2-P10)*ZI2	HA	48
50		P1Z=1.+(P11-P21*ZI2)*ZI2	HA HA	49 50
51		Q0Z=(Q20*ZI2-Q10)*ZI	HA	51
52		Q1Z=(Q11-Q21*ZI2)*ZI	HA	52
53		ZK=CEXP(FJ*(Z-POF))*CSQRT(ZI)*C3	HA	53
54		HO=ZK*(POZ+FJ*QOZ)	HA	54
55		HOP≃FJ*ZK*(P1Z+FJ*Q1Z)	HA	55
56		IF (IB.EQ.0) RETURN 745-005((SORT(745) 4)+11 41502654)	HA	56
57 58		ZMS=COS((SQRT(ZMS)-4,)•31.41592654) H0=.5*(Y0*(1.+ZMS)+H0*(1ZMS))	HA	57
59		HOP=.5*(TO*(T.+ZMS)+HOP*(TZMS)) HOP=.5*(YOP*(T.+ZMS)+HOP*(TZMS))	HA HA	58 59
60		RETURN	HA	59 60
	с	INITIALIZATION OF CONSTANTS	HA	61
	5	PSI=-GAMMA	HA	62
63		DO 6 K=1,25	HA	63
64		A1(K) =25/(K * K)	HA	64

HANKEL

.

65	A2(K)=1./(K+1.)	HA	65
66	PSI=PSI+1./K	HA	66
67	A3(K)=PSI+PSI	HA	67
68 6	A4(K)=(PSI+PSI+1./(K+1.))/(K+1.)	HA	68
69	DO 8 I=1,101	HA	69
70	TEST=1.	НА	70
71	DO 7 K=1,24	HA	71
72	INIT=K	HA	72
73	TEST=-TEST*I*A1(K)	HA	73
74	IF (TEST*A3(K).LT.1.E-6) GO TO 8	HA	74
757	CONTINUE	HA	75
768	M(I)=INIT	HA	76
77	GO TO 1	HA	77
78 C		HA	78
799	FORMAT (34H ERROR - HANKEL NOT VALID FOR Z=0.)	HA	79
80	END	HA	80-

.

LAMBDA

LAMBDA

PURPOSE

To compute the complex value of λ from the real integration parameter in ROM1.

METHOD

For integration along a straight path between the points a and b in the λ plane, λ and $d\lambda$ are

 $\lambda = a + (b - a)t$

$d\lambda = (b - a)dt$

SYMBOL DICTIONARY

A = a B = b DXLAM = b - a T = t XLAM = λ

LAMBDA

1		SUBROUTINE LAMBDA (T,XLAM,DXLAM)		
2	С		LA	1
3	С	COMPUTE INTEGRATION PARAMETER XLAM=LAMBDA FROM PARAMETER T.	LA	2
4	C	THE ARAMETER ALAMELAMBUA FROM PARAMETER T.	LA	3
5		COMPLEX A, B, XLAM, DXLAM	LA	- 4
6		COMMON /CNTOUR/ A,B	LA	5
7		DXLAM=B-A	LA	6
8		XLAM=A+DXLAM*T	LA	7
9		RETURN	LA	8
10		END	LA	9
			LA	10-

ROM1

ROM1

PURPOSE

To integrate the Sommerfeld integrands between two points in λ by the method of variable interval-width Romberg integration.

METHOD

A and B in common block /CNTOUR/ are the ends of the integration path and are set before ROM1 is called. The integration parameter Z in ROM1 starts at zero and ends at one. The corresponding value of λ is determined by subroutine LAMBDA as

$$\lambda = A + (B - A)Z$$

Subroutine SAOA returns six integrand values which are handled simultaneously in loops throughout the code. The Romberg variable interval-width integration method will not be described in detail since it is the same as that used in subroutine INTX in the main NEC program. The convergence test in ROM1 requires that all six components satisfy the relative error tests simultaneously.

ROM1

1	с	SUBROUTINE ROM1 (N,SUM,NX)	RO	1
	i C	ROMI INTEGRATES THE & SOURCOSELD INTEGRATIC CONT.	RO	2
	c	ROM1 INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM A TO B IN LAMBDA.	RO	3
	č	THE METHOD OF VARIABLE INTERVAL WIDTH ROMBERG INTEGRATION IS USED.		4
6		COMPLEX A, B, SUM, G1, G2, G3, G4, G5, T00, T01, T10, T02, T11, T20	RO	5
7		COMMON /CNTOUR/ A.B	RO	6
. 8		DIMENSION SUM(6), G1(6), G2(6), G3(6), G4(6), G5(6), T01(6), T10(6	RO	7
9		1), 120(6)		8
10		DATA NM,NTS,RX/131072,4,1,E-4/	RO	9
11		LSTEP=0	RO	10
12		Z=0.	RO	11
13		ZE=1.	RO	12
14		S=1.	RO	13
15		EP=S/(1.E4*NM)	RO	14
16		ZEND=ZE-EP	RO RO	15
17		DO 1 I=1,N	RO	16
18	1	SUM(I)=(0.,0.)	RO	17 18
19		NS=NX	RO	19
20		NT=0	RO	20
21		CALL SADA (Z.GI)	RO	21
	2	DZ=S/NS	RO	22
23		IF (Z+DZ.LE.ZE) GO TO 3	RO	23
24		DZ=ZE-Z	RO	24
25		IF (DZ.LE.EP) GO TO 17	RO	25
26		DZOT=DZ*.5	RO	26
27		CALL SAOA (Z+DZOT,G3)	RO	27
28		CALL SAOA (Z+DZ,G5)	RO	28
29		NOGO=0	RO	29
30		DO 5 $I=1,N$	RO	30
31 32		$TOO = (G1(I) + G5(I)) \cdot DZOT$	RO	31
33		TO1(I) = (TO0+DZ*G3(I))*.5	RO	32
34		110(I) = (4.0101) - 100)/3.	RO	33
35		TEST CONVERGENCE OF 3 POINT ROMBERG RESULT	RO	34
36		CALL TEST (REAL(T01(I)), REAL(T10(I)), TR, AIMAG(T01(I)), AIMAG(T10(I) 1), TI, 0.)	RO	35
37		IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1	RO	36
38	5	CONTINUE	RO	37
39	•	IF (NOGO.NE.O) GO TO 7	RO	38
40		DO 6 I=1, N	RO	39
41	6	$SUM(I) \approx SUM(I) + T10(I)$	RO	40
42		NT=NT+2	RO	41
43		GO TO 11	RO	42
44	7	CALL SAOA (Z+DZ*.25,G2)	RO	43
45		CALL SAOA (Z+DZ+.75,G4)	RO	44
46		NOGO=0	RO	45
47		DO 8 I=1,N	RO	46 47
48		T02=(T01(I)+DZOT*(G2(1)+G4(I)))*.5	RO	47 48
49		T11=(4.*T02-T01(I))/3.	RO	49
50		$T_{20}(I) = (16. \cdot T_{11} - T_{10}(I)) / 15.$	RO	50
51	С	TEST CONVERGENCE OF 5 POINT ROMBERG RESULT	RO	51
52		CALL TEST (REAL(T11), REAL(T20(I)), TR, AIMAG(T11), AIMAG(T20(I)), TT, O	RO	52
53		1.)	RO	53
54	0	IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1	RO	54
55	ø	CONTINUE	RO	55
56	•	IF (NOGO.NE.O) GO TO 13	RO	56
57		DO 10 I=1, N S (I) (T) = S (I) (T) (T) (T) (T)	RO	57
58	ĨŬ	SUM(I)=SUM(I)+T2O(I)	RO	58
59 60	11	NT=NT+1 7-7+07	RO	59
61	11	Z=Z+DZ	RO	60
62		DO 12 T-1 N	RO	61
63	12	G1(T)=G5(T)	RO	62
64	-	TE (NT LT NTS OF NS LE NY) CO TO 2	RO	63
			RO	64

ROM1

65		NS=NS/2		
66		NT=i	RO	65
67		GO TO 2	RO	66
68	13	NT=0	RO	67
69		IF (NS.LT.NM) GO TO 15	RO	68
70		IF (LSTEP.EQ.1) GO TO 9	RO	69
71		LSTEP=1	RO	70
72		CALL LAMBDA (Z.TOO,T11)	RO	71
73		PRINT 18, TOO	RO	72
74		PRINT 19, Z,DZ,A,B	RO	73
75		DO 14 I=1.N	RO	74
76	14	PRINT 19, G1(I),G2(I),G3(I),G4(I),G5(I)	RÓ	75
77		GO TO 9	RO	76
78	15	NS=NS+2	RO	77
79		DZ=S/NS	RO	78
80		DZOT=DZ+.5	RO	79
81		DO 16 I=1.N	RO	80
82		G5(I)=G3(I)	RO	81
83	16	$G_3(I) = G_2(I)$	RO	82
84		GO TO 4	RO	83
85	17	CONTINUE	RO	84
86		RETURN	RO	85
87	С		RO	86
88	18	FORMAT (38H ROM1 STEP SIZE LIMITED AT LAMBDA =,2E12.5)	RO	87
89	19	FORMAT (10E12.5)	RO	88
90		END	RO	89
			RO	90-

FURPOSE

To compute the integrands for the Sommerfeld integrals.

METHOD

The input to SAOA is the integration parameter T and constants in common block /EVLCOM/. The integration variable λ corresponding to T is obtained by calling subroutine LAMBDA. The values returned in array ANS are

ANS(1) =
$$D_2 H_0^{(1)''} (\lambda \rho) e^{-\gamma_2 (Z+Z')} \lambda^3 d\lambda/dT$$

ANS(2) =
$$D_2 \gamma_2^2 H_0^{(1)} (\lambda \rho) e^{-\gamma_2 (Z+Z')} \lambda d\lambda/dT$$

$$(1)' -\gamma_2(Z+Z') = 2$$

$$ANS(3) = -D_2\gamma_2H_0 \quad (\lambda\rho)e \qquad \lambda \ d\lambda/dT$$

ANS(4) =
$$\rho^{-1} D_2 H_0^{(1)} (\lambda \rho) e^{-\gamma_2 (Z+Z')} \lambda^2 d\lambda/dT$$

ANS(5) =
$$v_2 H_0^{(1)} (\lambda \rho) e^{-\gamma_2 (Z+Z')} \lambda d\lambda/dT$$

ANS(b) =
$$k_1^{-1} D_1 H_0^{(1)} (\lambda \rho) e^{-\gamma_2 (Z+Z')} \lambda d\lambda / dT$$

where $D_1 = \frac{1}{\gamma_1 + \gamma_2} - \frac{k_2^2}{\gamma_2(k_1^2 + k_2^2)}$

$$D_{2} = \frac{1}{\kappa_{1}^{2}\gamma_{2} + \kappa_{2}^{2}\gamma_{1}} - \frac{1}{\gamma_{2}(\kappa_{1}^{2} + \kappa_{2}^{2})} = \frac{\kappa_{2}^{2}(\gamma_{2} - \gamma_{1})}{\gamma_{2}(\kappa_{1}^{2} + \kappa_{2}^{2})(\kappa_{1}^{2}\gamma_{2} + \kappa_{2}^{2}\gamma_{1})}$$

$$Y_{1} = [\lambda^{2} - \kappa_{1}^{2}]^{1/2}$$

$$Y_{2} = [\lambda^{2} - \kappa_{2}^{2}]^{1/2}$$

$$\kappa_{1} = \kappa_{2}(\varepsilon_{1} - j\sigma_{1}/\omega\varepsilon_{0})^{1/2}$$

$$\kappa_{2} = \omega\sqrt{\mu_{0}\varepsilon_{0}}$$

The integrands given above are computed when JH >0. When JH ≤ 0 , $H_0^{(1)}(\lambda\rho)$ is replaced by $2J_0(\lambda\rho)$. The functions γ_1 and γ_2 are computed from SA 24 to SA 29 so that the branch cuts are vertical. This is not necessary from SA 17 to SA 20 since for the Bessel function form the integration contour is confined to a different quadrant than the branch cuts.

To avoid loss of accuracy due to cancellation when λ is large, D₂ is computed from the approximation for $\gamma_2 - \gamma_1$:

$$\gamma_2 - \gamma_1 \approx \pm \left[\frac{1}{2} \frac{\kappa_1^2 - \kappa_2^2}{\lambda} + \frac{1}{8} \frac{\kappa_1^4 - \kappa_2^4}{\lambda^3} + \frac{1}{16} \frac{\kappa_1^6 - \kappa_2^6}{\lambda^5}\right]$$

when $|\lambda|^2 \ge 100. |k_1|^2$. The sign is:

- for
$$\lambda_{R} < k_{2_{R}}$$
, $\lambda_{I} \ge 0$
- for $\lambda_{R} < -k_{1_{R}}$, $\lambda_{I} < 0$
+ for $\lambda_{R} > k_{1_{R}}$, $\lambda_{I} \ge 0$
+ for $\lambda_{R} > -k_{2_{R}}^{2}$, $\lambda_{I} < 0$.

There is no cancellation and this approximation is not valid when

or
$$-k_{1}^{R} \leq \lambda_{R} \leq k_{1}, \lambda_{I} \geq 0$$

 $k_{1} \leq \lambda_{R} \leq -k_{2}, \lambda_{I} < 0.$

 $\rm D^{}_{l}$ and $\rm D^{}_{2}$ are computed from SA 30 to SA 44.

ANS	= integrand values
во	= $2J_{0}(\lambda\rho)$ or $H_{0}^{(1)}(\lambda\rho)$
BOP	= $2J_0'(\lambda\rho)/\rho \text{ or } H_0^{(1)}(\lambda\rho)/\rho$
CGAM1	= Y
CGAM2	$= \gamma_2$
CK1	$= \kappa_1^2$
CKIR	= real part of k
CK1SQ	$= k_{\perp}^2$
СК 2	= k ₂
CK2SQ	$= k_2^2$
СКЗМ	$= k_2^2 / (k_1^2 + k_2^2)$
Сом	= exp $[-\gamma_2(2+2')]\lambda d\lambda/dT$ at SA 45
CT1	$= (k_1^2 - k_2^2)/2$
CT2	= $(k_1^4 - k_2^4)/8$
CT3	$= (k_1^6 - k_2^6) / 16$
DENI	$= D_1$
DEN2	$= D_2$
DGAM	$= \gamma_2 - \gamma_1$
DXL	$= d\lambda/dT$
JH	= flag to select Bessel or Hankel function form
R HO	= ρ
SIGN	= sign in approximation for γ_2 - γ_1
Т	= integration parameter
TKMAG	$= 100.1 k_1 l$
TSMAG	$= 100.1 k_1^2 l^2$
ХL	$= \lambda$
XLR	= real part of λ
Z PH	= 2 + 2'

1		SUBROUTINE SAOA (T.ANS)	SA	1
2			SA	2
3		SAOA COMPUTES THE INTEGRAND FOR EACH OF THE 6	\$A	3
4		SOMMERFELD INTEGRALS FOR SOURCE AND OBSERVER ABOVE GROUND	SA	4
5	С		SA	5
6		COMPLEX ANS.XL,DXL,CGAM1,CGAM2,B0,B0P,COM,CK1,CK1SQ,CKSM,CT1,CT2,C	SA	6
7		1T3, DGAM, DEN1, DEN2	SA	7
8		COMMON /EVLCOM/ CKSM, CT1, CT2, CT3, CK1, CK1SQ, CK2, CK2SQ, TKMAG, TSMAG, C	SA	8
9		1K1R, ZPH, RHO, JH	SA	9
10		DIMENSION ANS(6)	SA	10
11		CALL LAMBDA (T,XL,DXL)	SA	11
12		IF (JH.GT.O) GO TO 1	SA	12
13	С	BESSEL FUNCTION FORM	SA	13
14		CALL BESSEL (XL*RHO,BO,BOP)	ŞA	14
15		80=2. •80	SA	15
16		B0P=2. • B0P	SA	16
17		CGAM1=CSQRT(XL+XL-CK1SQ)	SA	17
18		CGAM2=CSQRT(XL*XL-CK2SQ)	SA	18
19		IF (REAL(CGAM1).EQ.O.) CGAM1=CMPLX(O.,→ABS(AIMAG(CGAM1)))	SA	19
20		IF (REAL(CGAM2).EQ.0.) CGAM2=CMPLX(0.,-ABS(AIMAG(CGAM2)))	SA	20
21		GO TO 2	SA	21
22	С	HANKEL FUNCTION FORM	SA	22
23	1	CALL HANKEL (XL*RHO,BO,BOP)	SA	23
24		COM=XL-CK1	SA	24
25		CGAM1=CSQRT(XL+CK1) CSQRT(COM)	SA	25
26		IF (REAL(COM).LT.OAND.AIMAG(COM).GE.O.) CGAM1=-CGAM1	SA	26
27		COM=XL-CK2	SA	27
28		CGAM2=CSQRT(XL+CK2) *CSQRT(COM)	SA	28
29		IF (REAL(COM).LT.OAND.AIMAG(COM).GE.O.) CGAM2=-CGAM2	SA	29
30	2	XLR=XL*CONJG(XL)	SA	30
31	~	IF (XLR.LT.TSMAG) GO TO 3	SA	31
32		IF (AIMAG(XL).LT.O.) GO TO 4	SA	32
33		XLR=REAL(XL)	SA	33
34		IF (XLR.LT.CK2) GO TO 5	SA	34
35		IF (XLR.GT.CK1R) GO TO 4	SA	35
36	z	DGAM=CGAM2-CGAM1	SA	36
37	5	GO TO 7	SA	37
37		SIGN=1.	SA	38
39	4	GO TO 6	SA	39
40	6	SIGN=-1.	SA	40
		DGAM=1./(XL*XL)		
41 42	0	DGAM=1./(XL*XL) DGAM=SIGN*((CT3*DGAM+CT2)*DGAM+CT1)/XL	SA SA	41 42
42	7	DEN2=CKSM+DGAM/(CGAM2+(CK1SQ+CGAM2+CK2SQ+CGAM1))	SA	43
44	1	DEN1=1./(CGAM1+CGAM2)-CKSM/CGAM2	SA	43
45		COM=DXL*XL*CEXP(-CGAM2*ZPH)	SA	
45		ANS(6)=COM+BO+DEN1/CK1	SA	46
40		COM=COM+DEN2	SA	47
48		IF (RHO.EQ.O.) GO TO 8	SA	48
40 49		B⊕P=B0P/RHO	SA	49
49 50		ANS(1)=-COM•XL•(BOP+BO•XL)	SA	49 50
		ANS(4) = COM*XL*BOP	SA	51
51 52		GO TO 9	SA	52
53	8	ANS(1)=-COM*XL*XL*.5	SA	53
53 54	0	ANS(4) = ANS(4)	SA	54
55	٩	ANS(4)=ANS(1) ANS(2)=COM*CGAM2*CGAM2*B0	SA	55
56	5	$ANS(2)=COM^2CGAM2^2CGAM2^2DO$ $ANS(3)=-ANS(4)^2CGAM2^2RHO$	SA	56
57		ANS(5)=-ANS(4)*COAM2*RHO ANS(5)=COM*BO	SA	57
58		RETURN	SA	58
59		END	SA	59-
73			54	

TEST - see TEST in main NEC program.

TEST

2. COMMON BLOCKS IN SOMNEC

COMMON/CNTOUR/ A, B

Routines Using /CNTOUR/ EVLUA, GSHANK, LAMBDA, ROMI

Parameters

A = start of integration interval

B = end of integration interval

A and B are used by subroutine LAMBDA to compute the complex value of λ from the real parameter supplied by ROM1.

COMMON/EVLCOM/ CKSM, CT1, CT2, CT3, CK1, CK1SQ, CK2, CK2SQ, TKMAG, TSMAG, CK1R, ZPH, RHO, JH

Routines Using /EVLCOM/

SOMNEC, EVLUA, SAOA

Parameters

See symbol dictionaries for subroutines

COMMON/GGRID/ AR1 (11, 10, 4), AR2 (17, 5, 4), AR3 (9, 8, 4), EPSCF, DXA(3), DYA(3), XSA(3), YSA(3), NXA(3), NYA(3)

Routines Using /GGKID/ SUMNEC (main program)

Parameters

AR1= array for grid 1 (see Figure 12, Part I)AR2= array for grid 2AR3= array for grid 3EPSCF= ε_{c}

For grid i, ARi(j, k, m) is the value of I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} , or I_{ϕ}^{H} for $M = 1, \dots 4$ respectively at the point $R_{1}/\lambda = S_{i} + (j-1)\Delta R_{i}$ $j = 1, \dots N_{i}$ $\theta = T_{i} + (k-1)\Delta \theta_{i}$ $k = 1, \dots M_{i}$ where $S_{i} = XSA(i)$ $\Delta R_{i} = DXA(i)$ $N_{i} = NXA(i)$ $T_{i} = YSA(i)$ $\Delta \theta_{i} = DYA(i)$ $M_{i} = NYA(i)$

XSA and DXA are in units of wavelength. YSA and DYA are in units of radians. The upper limit of grid 1 (XSA(2) = XSA(3)) and the upper limit of grid 2 (YSA(3)) may be changed and the densities of points may be changed. Boundaries that are zero should not be changed without modifying subroutine INTRP in NEC. The three grids must cover the region $0 \le R_1/\lambda \le 1$ and $0 \le \theta \le \pi/2$.

3. ARRAY DIMENSION LIMITATIONS

Number of Points in Interpolation Grids

Arrays:

 $\begin{array}{l} \text{COMMON/GGRID/AR1 (N}_{1}, M_{1}, 4), \text{ AR2 (N}_{2}, M_{2}, 4), \text{ AR3 (N}_{3}, M_{3}, 4) \\ \text{where } \text{N}_{i} \geq \text{NXA(i) and } \text{M}_{i} \geq \text{NYA(i)} \end{array}$

The dimensions in common /GGRID/ in SOMNEC must be the same as the dimension of /GGRID/ in NEC.

Maximum Number of Iterations in GSHANK

Arrays:

Subroutine GSHANK: Q1 (6, MAXH), Q2 (6, MAXH) where MAXH = maximum value of INT in GSHANK set at GS 13.

4. SOMNEC SUBROUTINE LINKAGE

Figure 17 shows the organization of subroutines in SOMNEC.

-

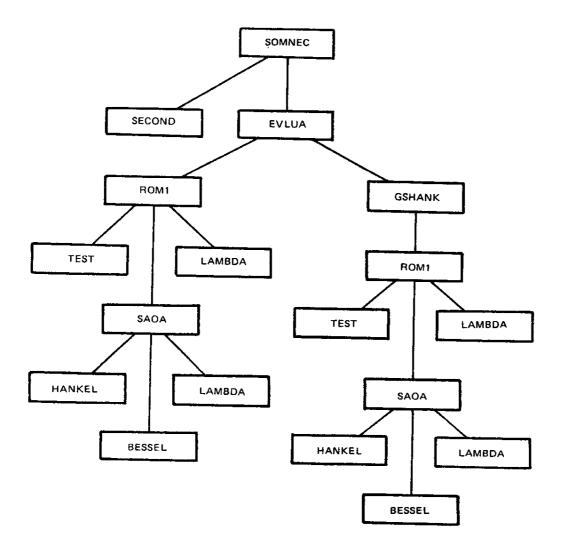


Figure 17. SOMNEC Subroutine Linkage Chart.

References

- 1. Ralston, A., <u>A First Course in Numerical Analysis</u>, McGraw-Hill, New York, 1965.
- Norton, K. A., "The Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere," <u>Proceedings of the Institute of Radio</u> <u>Engineers</u>, Vol. 25, No. 9, Sept. 1937.
- 3. Miller, E. K., "A Variable Interval Width Quadrature Technique Based on Romberg's Method," Journal of Computational Physics, Vol. 5, No. 2, April 1970.
- 4. Miller, E. K., and G. J. Burke, "Numerical Integration Methods," IEEE Transactions, Vol. Ap-17, No. 5, Sept. 1969.
- 5. <u>Handbook of Mathematical Functions</u>, edited by M. Abramowitz, National Bureau of Standards (U.S.), Applied Mathematics Series 55, 1964.
- Shanks, D., "Non-Linear Transformations of Divergent and Slowly Convergent Sequences," J. Math. Phys. 24, 1, 1955.